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Abstract

In the absence of external guidance, how can a robot learn to map the many raw
pixels of high-dimensional visual inputs to useful action sequences? We propose
here Continual Curiosity driven Skill Acquisition (CCSA). CCSA makes robots
intrinsically motivated to acquire, store and reuse skills. Previous curiosity-based
agents acquired skills by associating intrinsic rewards with world model improve-
ments, and used reinforcement learning to learn how to get these intrinsic rewards.
CCSA also does this, but unlike previous implementations, the world model is a
set of compact low-dimensional representations of the streams of high-dimensional
visual information, which are learned through incremental slow feature analysis.
These representations augment the robot’s state space with new information about
the environment. We show how this information can have a higher-level (compared
to pixels) and useful interpretation, for example, if the robot has grasped a cup in
its field of view or not. After learning a representation, large intrinsic rewards are
given to the robot for performing actions that greatly change the feature output,
which has the tendency otherwise to change slowly in time. We show empirically
what these actions are (e.g., grasping the cup) and how they can be useful as skills.
An acquired skill includes both the learned actions and the learned slow feature
representation. Skills are stored and reused to generate new observations, enabling
continual acquisition of complex skills. We present results of experiments with
an iCub humanoid robot that uses CCSA to incrementally acquire skills to topple,
grasp and pick-place a cup, driven by its intrinsic motivation from raw pixel vision.

Keywords: Reinforcement Learning, Artificial Curiosity, Skill Acquisition, Slow
Feature Analysis, Continual Learning, Incremental Learning, iCub

1. Introduction

Over the past decade, there has been a growing trend in humanoid robotics re-
search towards robots with a large number of joints, or degrees of freedom, notably
the ASIMO [1], PETMAN [2] and the iCub [3]. These robots demonstrate a high

Preprint submitted to Artificial Intelligence February 11, 2015



Perspective 3
Perspective 2

Persp
ectiv

e 1

Figure 1: A playroom scenario for a baby humanoid-robot in a lab environment, where it is placed
next to a table with a few moving objects. The robot has a limited field-of-view and encounters
continuous streams of images as it holds or shifts its gaze. Figure shows three such perspectives
oriented towards the moving objects. How can the robot learn to solve tasks in the absence of an
external guidance?

amount of dexterity and are potentially capable of carrying out complex human-
like manipulation. When interacting with the real-world, these robots are faced
with several challenges, not the least of which is the problem of how to solve tasks
upon processing an abundance of high-dimensional sensory data.

In the case of well structured environments, these robots can be carefully pro-
grammed by experts to solve a particular task. But real-world environments are
usually unstructured and dynamic, which makes it is a daunting task to program
these robots manually. This problem can be substantially alleviated by using re-
inforcement learning (RL; [4, 5]), where a robot learns to acquire desired task-
specific behaviors, by maximizing the accumulation of task-dependent external
rewards through simple trial-and-error interactions with the environment.

Unfortunately, for humanoid robots equipped with vision, the sensory and joint
state space is so large that it is extremely difficult to procure the rewards (if any ex-
ist) by random exploration. For example, if the robot receives a reward for sorting
objects, it could take an extremely long time to obtain the reward for the first time.
Therefore, it becomes necessary to (a) build lower-dimensional representations of
the state-space to make learning tractable and (b) to explore the environment ef-
ficiently. But how can these robots learn to do this in the presence of external
rewards that are typically only sparsely available?

Much of the human capacity to explore and solve problems is driven by self-
supervised learning [6, 7], where we seek to acquire behaviors by creating novel
situations and learning from them. As an example, consider a simple playroom
scenario for a baby humanoid as shown in Figure 1. Here, the robot is placed
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next to a table with a few moving objects. The robot has a limited field-of-view
and encounters continuous streams of images as it holds or shifts its gaze. If the
robot can learn compact representations and predictable behaviors (e.g., to grasp)
from its interactions with the cup, then by using these learned behaviors, it can
speed up the acquisition of external rewards related to some teacher-defined task,
such as placing the cup at a particular location. Continually acquiring and reusing
a repertoire of behaviors and representations of the world, learned through self-
supervision, can therefore make the robot adept in solving many external tasks.

But how can the robot (a) self-supervise its exploration, (b) build representa-
tions of the high-dimensional sensory inputs and (c) continually acquire skills that
enable it to solve new tasks? These problems have individually been researched in
the machine learning and robotics literature [8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. However, to develop a single system
that addresses all these important issues together is a challenging open problem in
artificial intelligence (AI) research. We propose an online-learning framework that
addresses this open problem.

In order to make the robot self-supervised or intrinsically-motivated to explore
new environments, we use the theory of Artificial Curiosity (AC; [30, 31]). AC
mathematically describes curiosity and creativity. AC-driven agents are interested
in the learnable but as-yet-unknown aspects of their environment, and are disin-
terested in the already learned and inherently unlearnable (noisy) aspects. Specif-
ically, the agent receives intrinsic rewards for action sequences, and these rewards
are proportional to the improvement of the agent’s internal model or predictor of
the environment. Using RL and the self-generated intrinsic rewards derived us-
ing AC [32, 33, 34, 35, 36, 25], the agent is motivated to explore the environment
where it makes maximum learning progress.

Most RL algorithms however, tend to work only if the dimensionality of the
state space is small, or its structure is simple. In order to deal with massive high-
dimensional streams of raw sensory information obtained, for example through vi-
sion, it is essential to reduce the input dimensionality by building low-dimensional
but informative abstractions of the environment [37]. An abstraction maps the
high-dimensional input to a low-dimensional output. The high-dimensional data
sensed by a robot is often temporally correlated and can be greatly compressed if
the temporal coherence in the data is exploited. Slow Feature Analysis (SFA; [14,
38, 39]) is an unsupervised learning algorithm that extracts temporal regularities
from rapidly changing raw sensory inputs. SFA is based on the Slowness Princi-
ple [40, 41, 42], which states that the underlying causes of changing signals vary
more slowly than the primary sensory stimulus. For example, individual retinal
receptor responses or gray-scale pixel values of video may change quickly com-
pared to latent abstract variables, such as the position of a moving object. SFA has
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achieved success in many problems and scenarios, e.g., extraction of driving forces
of a dynamical system [43], nonlinear blind source separation [44], as a prepro-
cessor for reinforcement learning [39], and learning of place-cells, head-direction
cells, grid-cells, and spatial view cells from high-dimensional visual input [38].

SFA techniques are not readily applicable to open-ended online learning agents,
as they estimate covariance matrices from the data via batch processing. We instead
use Incremental Slow Feature Analysis (IncSFA; [45, 46]), which does not need
to store any input data or computationally expensive covariance matrix estimates.
IncSFA makes it feasible to handle high-dimensional image data in an open-ended
manner.

IncSFA, like most online learning approaches, gradually forgets previously
learned representations whenever the statistics of the input change, for example,
when the robot shifts its gaze from perspective two to perspective one in Fig-
ure 1. To address this issue, in our previous work, we proposed an algorithm
called Curiosity-Driven Modular Incremental Slow Feature Analysis (Curious Dr.
MISFA; [47, 48]), which retains what was previously learned in the form of ex-
pert modules [29]. From a set of input video streams, Curious Dr. MISFA actively
learns multiple expert modules comprising slow feature abstractions, in the order
of increasing learning difficulty. The algorithm continually estimates the initially
unknown learning difficulty through intrinsic rewards generated by exploring the
input streams.

Using Curious Dr. MISFA, the robot in Figure 1 finds its interactions with the
plastic cup more interesting (easier to encode) than the complex movements of the
other objects. This results in a compact slow feature abstraction that encodes its
interactions with the cup. Eventually, the robot finds the cup-interaction boring and
its interest shifts towards encoding other perspectives while retaining the learned
abstraction. Can the robot simultaneously acquire re-usable skills while acquiring
abstractions? Each abstraction learned encodes some previously unknown regular-
ity in the input observations, which can therefore be used as a basis for acquiring
new skills.

Our contribution here is the Continual Curiosity-driven Skill Acquisition (CCSA)
framework, for acquiring both abstractions and skills in an online and continual
manner. In RL, the options framework [49] formalizes skills as RL policies, active
within a subset of the state space, which can terminate at subgoals, after which an-
other option takes over. When the agent has a high-dimensional input, like vision,
an option requires a dimensionality reducing abstraction, so that policy learning be-
comes tractable. CCSA is a task-independent curiosity-driven learning algorithm
that combines Curious Dr. MISFA with the options framework. Each slow feature
abstraction learned by Curious Dr. MISFA augments the robot’s default state space,
which in our case is a set of low-level kinematic joint poses learned using Task Rel-
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evant Roadmaps [50]. This augmented state space is then clustered to create new
distinct states. A Markovian transition model is learned by exploring the new state
space. The reward function is also learned through exploration, with the agent be-
ing intrinsically rewarded for making state-transitions that produce a large variation
in the slow-feature outputs. This specialized reward function is used to build the
option’s policies, to drive the robot to states where such transitions will occur. Such
transitions are shown to correspond to bottleneck states, i.e., “doorways”, which
are known to be good subgoals in the absence of externally imposed goals [51, 52].
Once the transition and reward functions are learned, the option’s policy is learned
via Least-Squares Policy Iteration [53]. Skills acquired by the robot in the form
of options, are reused to generate new input observations, enabling acquisition of
more complex skills in a continual open-ended manner [29, 54]. Using CCSA, in
our experiments, an iCub humanoid robot addresses the open problems discussed
earlier, acquiring a repertoire of skills (topple, grasp) from raw-pixel vision, driven
purely by its intrinsic motivation.

The rest of this paper is organized as follows. Section 2 discusses related re-
search work carried out prior to this paper. Sections 3 and 4 present an overview
and a formulation of the learning problem associated with the CCSA framework.
Section 5 discusses details of the internal workings of CCSA. Section 6 contains
experiments and results conducted using an iCub humanoid robot; Sections 7-8
presents future work and conclusions.

2. Related Work

Existing intrinsically-motivated skill acquisition techniques in RL have been
applied to simple domains. For example, Bakker and Schmidhuber [55] proposed
a hierarchical RL framework called HASSLE in a grid world environment, where
high-level policies discover subgoals from clustering distance-sensor outputs and
low-level policies specialize on reaching the subgoals. Stout and Barto [24] explore
the use of a competence-based intrinsic motivation as a developmental model for
skill acquisition in simple artificial grid-world domains. Pape et al. [25] proposed
a method for autonomous acquisition of tactile skills on a biomimetic robot finger,
through curiosity-driven reinforcement learning.

There have been attempts to find skills using feature-abstractions in domains
such as those of humanoid robotics. Hart [56] proposed an intrinsically motivated
hierarchical skill acquisition approach for a humanoid robot. The system combines
discrete event dynamical systems [57] as a control basis and an intrinsic reward
function [26] to learn a set of controllers. However, the intrinsic reward function
used is task specific, and the system requires a teacher to design a developmental
schedule for the robot.
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Konidaris et al. [58, 59] show how each option might be assigned with an ab-
straction from a library of many sensorimotor abstractions to acquire skills. The ab-
stractions have typically been hand-designed and learning was assisted by human-
demonstration. In their recent work [27], an intrinsic motivation system makes a
robot acquire skills from one task to improve the performance on a second task.
However, the robot used augmented reality tags to identify target objects and had
access to a pre-existing abstraction library. CCSA autonomously learns a library of
abstractions and control policies simultaneously from raw-pixel streams generated
via exploration, without any prior-knowledge of the environment.

Mugan and Kuipers’s [60] Qualitative Learner of Action and Perception sys-
tem discretizes low-level sensorimotor experience through defining landmarks in
the variables and observing contingencies between landmarks. It builds predictive
models on this low-level experience, which it later uses to generate plans of ac-
tions. It either selects its actions randomly (early) or such that it expects to make
fast progress in the performance of the predictive models (artificial curiosity). The
sensory channels are preprocessed so that the input variables, for example, track
the positions of the objects in the scene. A major difference between this system
and ours is that we operate upon the raw pixels directly, instead of assuming the
existence of a low-level sensory model that can track the positions of the objects in
the scene.

Baranes and Oudeyer [61] proposed an intrinsic motivation architecture called
SAGG-RIAC, for adaptive goal-exploration. The system comprises two learning
parts, one for self-generation of subgoals within the task-space and the other for ex-
ploration of low-level actions to reach the subgoals selected. The subgoals are gen-
erated using heuristic methods based on a local measure of competence progress.
The authors show results using a simulated quadruped robot on reaching tasks. The
system however, assumes that a low-dimensional task-space is provided. CCSA is
a task-independent approach, where subgoals are generated automatically by the
slow feature abstractions that encode spatio-temporal regularities in the raw high-
dimensional video inputs.

Ngo et al. [62, 63] investigated an autonomous learning system that utilizes a
progress-based curiosity drive to ground a given abstract action, e.g., placing an
object. The general framework is formulated as a selective sampling problem in
which an agent samples any action in its current situation as soon as it sees that
the effects of this action are statistically unknown. If no available actions have
a statistically unknown outcome, the agent generates a plan of actions to reach a
new setting where it expects to find such an action. Experiments were conducted
using a Katana robot arm with a fixed overhead camera, on a block-manipulation
task. The authors show that the proposed method generates sample-efficient curi-
ous exploratory behavior and continual skill acquisition. However, unlike CCSA,
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the sensorimotor abstractions are hand-designed and not learned by the agent.
CCSA uses IncSFA to find low-dimensional manifolds within the raw pixel

inputs, providing a basis for coupled perceptual and skill learning. We empha-
size the special utility of SFA for this task over similar methods such as princi-
pal component analysis [64], or predictive-projections [65], which are based on
variance or nearest neighbor learning, while Slow features through IncSFA ex-
tract temporal invariance from input streams that represent “doorway” or “bottle-
neck” aspects (choke-points between two more fully connected subareas), similar
to Laplacian-Eigen Maps [66, 67, 68]. The hierarchical reinforcement learning
literature [69, 70, 71, 49, 51, 55, 67, 52] illustrates that such bottlenecks can be
useful subgoals. Finding such bottlenecks in visual input spaces is a relatively new
concept, and one we exploit in the iCub experiments. For example, while it moves
its arm around a cup in the scene, the bottleneck state is where it topples the cup
over, invariant to the arm position. The two subareas in this case are 1. the cup is
upright (stable) while the arm moves around, 2. the cup is on its side (stable) while
the arm moves around. More studies on the types of representations learned by the
IncSFA algorithm can be found elsewhere [47, 46].

An initial implementation of Curious Dr. MISFA for learning slow feature ab-
stractions [48], a discussion on its neurophysiological correlates [47] and a proto-
typical construction of a skill from a slow feature abstraction [72] can be found
in our previous work. The novel contribution of this paper is that we present an
online learning algorithm (CCSA) that uses Curious Dr. MISFA for learning slow
feature abstractions, such that it enables a robot to acquire, store and reuse skills in
an open-ended continual manner. We also formally address the underlying learn-
ing problem of task-independent continual curiosity-driven skill acquisition. We
demonstrate the working of our algorithm with iCub experiments and show the
advantages of intrinsically motivated skill acquisition for solving an external task.

3. Overview of the Proposed Framework

In this section, we will briefly summarize the overall framework of the pro-
posed algorithm, which we call Continual Curiosity driven Skill Acquisition (CCSA).
Figure 2 illustrates the overall framework. The learning problem associated with
CCSA can be described as follows: From a set of pre-defined or previously ac-
quired input exploratory behaviors, which generate potentially high-dimensional
time-varying observation streams, the objective of the agent is to (a) acquire an
easily learnable yet unknown target behavior and (b) re-use the target behavior to
acquire more complex target behaviors. The target behaviors represent the skills
acquired by the agent. A sample run of the CCSA framework to acquire a skill is
as follows (see Figure 2):
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Figure 2: High-level control flow of the Continual Curiosity-driven Skill Acquisition (CCSA) frame-
work. (a) The agent starts with a set of pre-defined or previously acquired exploratory behaviors (rep-
resented as exploratory options). (b) It makes high-dimensional observations upon actively executing
the exploratory options. (c) Using the Curious Dr. MISFA algorithm, the agent learns a slow feature
abstraction that encodes the easiest-to-learn yet unknown regularity in the observation streams. (d)
The slow feature abstraction outputs are clustered to create feature states that are augmented to the
agent’s abstracted-state space. (e) A Markovian transition model of the new abstracted-state space
and an intrinsic reward function are learned through exploration. (f) A deterministic policy is then
learned via model-based Least-Squares Policy Iteration (Model-LSPI) and a target option is con-
structed. The deterministic target-option’s policy is modified to a stochastic policy in the agent’s new
abstracted states and is added to the set of exploratory options.

(a) The agent starts with a set of pre-defined or previously acquired exploratory
behaviors. We make use of the options framework [49] to formally represent
the exploratory behaviors as exploratory options (see Section 4 for a formal
definition of the terminology used here).

(b) The agent makes high-dimensional observations through a sensor-function,
such as a camera, upon actively executing the exploratory options.

(c) Using our previously proposed curiosity-driven modular incremental slow
feature analysis (Curious Dr. MISFA) algorithm, the agent learns a slow fea-
ture abstraction that encodes the easiest-to-learn yet unknown regularity in
the observation streams (see Section 5.2).

(d) The slow feature abstraction outputs are clustered to create feature states
that are augmented to the agent’s abstracted-state space, which contains pre-
viously encoded feature-states (see Section 5.3).
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(e) A Markovian transition model is learned by exploring the new abstracted-
state space. The reward function is also learned through exploration, with the
agent being intrinsically rewarded for making state-transitions that produce
a large variation (high statistical variance) in the slow-feature outputs. This
specialized reward function is used to learn action-sequences (policy) that
drives the agent to states where such transitions will occur (see Section 5.3).

(f) Once the transition and reward functions are learned, a deterministic policy
is learned via model-based Least-Squares Policy Iteration (LSPI; [53]). The
learned policy and the learned slow feature abstraction together constitute a
target option, which represents the acquired skill (see Section 5.3).

(f)-(a) The deterministic target-option’s policy is modified to a stochastic policy
in the agent’s new abstracted states and is added to the set of exploratory
options (see Section 5.4). This enables the agent to reuse the skills to acquire
more complex skills in a continual open-ended manner [29, 54].

CCSA is a task-independent algorithm, i.e., it does not require any design mod-
ifications when the environment is changed. However, CCSA makes the following
assumptions: (a) The agent’s default abstracted-state space contains low-level kine-
matic joint poses of the robot learned offline using Task Relevant Roadmaps [50].
This is done to limit the iCub’s exploration of its arm to a plane parallel to the ta-
ble. This assumption can be relaxed resulting in a larger space of arm-exploration
of the iCub, and the skills thus developed may be different. (b) CCSA requires
at least one input exploratory option. To minimize human inputs into the system,
in our experiments at t = 0, the agent starts with only a single input exploratory
option, which is a random-walk in the default abstracted-state space. However,
environment or domain specific information can be used to design several input
exploratory options in order to shape the resulting skills. For example, random-
walk policies mapped to different sub-regions in the robot’s joint space can be
used.

4. Theoretical Formulation of the Learning Problem

In this section, we present a theoretical formulation of the learning problem
associated with our proposed CCSA framework. We first formalize the curiosity-
driven skill acquisition problem and then later in the section we present a continual
extension of it.

4.1. Curiosity-driven Skill Acquisition

Given a fixed set of input exploratory options, which generate potentially high
dimensional observation streams that may or may-not be unique, the objective is to
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Figure 3: Curiosity-driven Skill Acquisition: Given a fixed set of input exploratory options (repre-
sented by red dashed boxes) generating n observation streams, abstractions (represented by circles)
and corresponding target options (represented by pink dotted boxes) are learned sequentially in order
of increasing learning difficulty. The learning process involves not just acquiring the target options,
but also the sequence in which they are acquired. The top figure shows an example of the desired re-
sult after the first target option was learned. The bottom figure shows the the desired end result after
all possible target options have been learned. The curved arrow indicates the temporal evolution of
the learning process.

acquire a previously unknown target option corresponding to the easily-encodable
observation stream. Figure 3 illustrates the learning process. The learning process
iterates over the following steps:
(a) Estimate the easily-encodable yet unknown observation stream, while simulta-
neously learning a compact encoding (abstraction) for it.
(b) Learn an option that maximizes the statistical variance of the encoded abstrac-
tion output. The problem is formalized as follows:
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4.1.1. Notation
Environment: An agent is in an environment that has a state-space S. It can

take an action a ∈ A and transition to a new state according to the transition-model
(environment dynamics) P : S × A → S . The agent observes the environment
state s as a high-dimensional vector, x ∈ RI , I ∈ N.

Abstraction: Let Θ denote some online abstraction-estimator that updates a
feature-abstraction φ, where Θ(x, φ) returns an updated abstraction for an input
x. The abstraction φ : x 7→ y maps a high-dimensional input observation stream
x(t) ∈ RI to a lower-dimensional output y(t) ∈ RJ , J � I, J ∈ N, such that
y(t) = φ (x(t)).

Abstracted-State Space: The agent’s abstracted-state space SΦ contains the
space spanned by the outputs y of all the abstractions that were previously learned
using Θ.

Input Exploratory Options: The agent can execute an input set of pre-defined
temporally extended action sequences, called the exploratory option set Oe =
{Oe1, ..., Oen;n ≥ 1}. Each exploratory option is defined as a tuple 〈Iei , βei , πei 〉,
where Iei ⊆ SΦ is the initiation set comprising abstracted states where the op-
tion is available, βei : SΦ → [0, 1] is the option termination condition, which will
determine where the option terminates (e.g., some probability in each state), and
πei : Iei × A → [0, 1] is a pre-defined stochastic policy, such as a random walk
within the applicable state space. Each exploratory-option’s policy generates an
observation stream via a sensor-function U , such as an image-sensor like a camera:

xi(t) = U(P(s, πei (s
Φ)))

where P is the unknown transition model of the environment, sΦ ∈ Iei is the
agent’s current abstracted state while executing the ith exploratory option Oei at
time t, s ∈ S is the corresponding environment state, and πei (s

Φ) returns an action.
Let X = {x1, ...,xn} denote the set of n I-dimensional observation streams gen-
erated by the n exploratory-option’s policies. At each time t however, the learning
algorithm’s input sample is from only one of the n observation-streams.

Curiosity Function: Let Ω : X → [0, 1) denote a function indicating the
speed of learning an abstraction by the abstraction-estimator Θ. Ω induces a to-
tal ordering among the observation streams making them comparable in terms of
learning difficulty.1

Target Options: Unlike the pre-defined input exploratory-option set, a target-
option set OL is the outcome of the learning process. A target option OL ∈ OL

1Refer to our previous work [47, 73] for a proof on the existence of such a function and an
analytical expression of Ω for IncSFA.
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contains a learned abstraction φi and a learned deterministic policy πLi . It is defined
as a tuple 〈ILi , βLi , φi, πLi 〉. ILi ⊆ (SΦ × SΦ

φi
) is the target-option’s initiation set

defined over the augmented state-space (SΦ × SΦ
φi

), where SΦ
φi

denotes the space
spanned by the abstraction φi’s output y(t) = φ (xj(t)), xj ∈ X . βi is the option’s
termination condition, and πLi : (SΦ × SΦ

φi
) → A is the learned deterministic

policy.
Encoded Observation Streams: Let XO

L(t) denote an ordered set (induced
by time t) of pre-images of the learned abstractions outputs,XO

L(t) = {φ←i yi,∀OLi
∈ OL(t)}. XOL(t) represents the set of encoded observation streams at time t.

Other Notation: |.| indicates cardinality of a set, ‖.‖ indicates Euclidean norm,
〈.〉t indicates averaging over time, 〈.〉τt indicates windowed-average with a fixed
window size τ over time. δ is a small scalar constant (≈ 0). Var[.] represents
statistical variance and ∀ indicates forall.

4.1.2. Problem Statement
With the above notation, curiosity-driven skill acquisition problem can be for-

malized as an optimization problem with the objective that: Given a fixed set of
input exploratory options Oe, find a target-option set OL, such that the number of
target options learned at any time t is maximized:

max
OL

∣∣OL(t)
∣∣ , ∀t = 1, 2, ...

under the constraints,

〈yji 〉t = 0, 〈(yji )
2〉t = 1, ∀j ∈ {1, ..., J},∀OLi ∈ OL(t) (1)(

∀OLi ∈ OL(t), ∃j ∈ {1, ..., n},
and ∀OLk 6=i ∈ OL(t)

)
:
〈‖Θ(xj, φi)− φi‖〉τt ≤ δ
〈‖Θ(xj, φk)− φk‖〉τt > δ

(2)

Ω(xi) ≤ Ω(xj), ∀i < j and xi,xj ∈ XO
L(t) (3)

πLi = arg sup
πi

Var
[
φi
(
U(P(s, πi(s

Φ)))
)]
, sΦ ∈ IL,∀OLi ∈ OL(t). (4)

Constraint (1) requires that the abstraction-output components have zero mean
and unit variance. This constraint enables the abstractions to be non-zero and
avoids learning features for constant observation streams. Constraint (2) requires
a unique abstraction be learned that encodes at least one of the input observation
streams, avoiding redundancy. Constraint (3) imposes a total-ordering induced
by Ω on the abstractions learned. Easier-to-learn observation streams are encoded
first. And finally, Constraint (4) requires that each target-option’s policy maximizes
sensitivity, determined by the variance of the observed abstraction outputs [74]. In
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the rest of the paper, we interchangeably use the word skill to denote a learned
target option OLi and a skill-set to denote the target-option set OL.

Optimal Solution: For the objective to be minimized, at any time t, the optimal
solution is to learn a target option corresponding to the current easiest but not-yet-
learned abstraction among the observation streams (to satisfy Constraints (1-3))
and a policy that maximizes the variance in the encoded abstraction output (to
satisfy Constraint (4)).

However, since Ω (see Constraint 3) is not known a priori, it needs to be es-
timated online by actively exploring the input exploratory options over time. One
possible approach is to find (a) an analytical expression2 of Ω for the particular
abstraction-estimator Θ and (b) an observation stream selection technique that can
estimate the Ω values for each observation stream. This approach would be de-
pendent on the abstraction-estimator used. However, our proposed framework em-
ploys an abstraction-estimator independent approach by making use of reinforce-
ment learning to estimate the Ω values, in the form of curiosity rewards generated
through the learning progress made by Θ.

4.2. Continual Curiosity-driven Skill Acquisition

In the above formulation, the agent has a fixed set of n(≥ 1) input exploratory
options. Therefore, the number of learnable target options is equal to the total
number of learnable abstractions, which is at most equal to the number of input
exploratory options:

lim
t→∞

∣∣OL(t)
∣∣ ≤ n. (5)

To enable continual learning [29], the number of skills acquired by the agent
should not necessarily be bounded and the agent needs to reuse the previously
acquired skills to learn more complex skills. Therefore, continual curiosity-driven
skill acquisition learning problem is a slightly modified version of the above formu-
lation, such that the target options learned form a basis for new input exploratory
options:

Oe ← Oe ∪ F(OL), (6)

where F(.) denotes some functional variation of a deterministic target option to
make it stochastic (exploratory). Therefore, the number of input exploratory op-
tions (n) increases whenever a new skill is acquired by the agent.

2Refer to our previous work [47] for an analytical expression of Ω for IncSFA.
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Sub-Target Options: Constraint (4) requires that each target-option’s policy max-
imizes variance of the observed J-dimensional abstraction outputs. However in
principle, the constraint can be re-written such that only a subset of J dimensions
of the abstraction can be used to learn a policy. This results in a maximum number
of 2J − 1 learnable policies. We denote a set of target options that all share the
same abstraction {〈ILi , βLi , φi, πLij〉; j ≤ (2J − 1)} as sub-target options. To keep
it simple however, in the rest of the paper we use all the J dimensions, as presented
in Constraint (4), to learn the target-option’s policy and therefore limiting 1 target
option for each learned abstraction.

5. Continual Curiosity-driven Skill Acquisition (CCSA) Framework

Section 3 presented an overview of our proposed framework. Here, we discuss
each part of the framework in detail and also show how it addresses the learning
problem formalized in Section 4.

5.1. Input Exploratory Options
As discussed in Section 4, we defined a set of input exploratory options that

the agent can execute to interact with the environment. Here, we present details on
how to construct these options.

The simplest exploratory-option policy is a random walk. However, we present
here a more sophisticated variant that uses a form of initial artificial curiosity,
based on error-based rewards [22]. This exploratory-option’s policy πe is de-
termined by the predictability of the observations x(t), but can also switch to a
random walk when the environment is too unpredictable.

This policy πe has two phases. If the estimation error of any already learned
abstraction modules for the incoming observations is lower than threshold δ, the
exploratory-option’s policy is learned using Least-Squares Policy Iteration Tech-
nique (LSPI; [53]), with an estimation of the transition model actively updated over
the option’s state-space Iei ⊆ SΦ, and an estimated reward function that rewards
high estimation errors. Such a policy encourages the agent to explore its “unseen
world” (Figure 4(a)). But if the estimation error of already learned abstraction
modules is higher than the threshold δ, then the exploratory-option’s policy is a
random-walk over the option’s state-space. Figure 4 illustrates this error seek-
ing exploratory-option’s policy. We denote this policy as LSPI-Exploration policy.
When the agent selects an exploratory option Oei to execute, it follows the option’s
policy, generating an observation stream xi = U(P(s, πei (s

Φ))), until the termina-
tion condition is met. To keep it general and non-specific to the environment, in all
our experiments, each exploratory-option’s termination condition is such that the
option terminates after a fixed τ time-steps since its execution.
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Figure 4: (a) Exploratory-option policy has two phases: If the estimation error of any already learned
abstraction modules for the incoming observations is lower than threshold δ, the exploratory-option’s
policy is learned using Least Squares Policy Iteration (LSPI). If the estimation error is higher than
the threshold then the policy is a random walk. (b) An example thresholded estimation error and the
(c) corresponding exploration policy.

Setting a different input exploratory-option set would influence the skills de-
veloped by CCSA. In our experiments at t = 0, the agent starts with only a single
exploratory option as defined above. The LSPI-Exploration policy only speeds up
the agent’s exploration by acting deterministically in the predictable world and ran-
domly in unseen world. Since at t = 0 the world is unexplored, LSPI-Exploration
policy is just a random walk in the agent’s abstracted states. Environment or do-
main specific information can be used to design the input exploratory-option set in
order to shape the resulting skills. For example, exploratory options with random-
walk policies mapped to different sub-regions in the robot’s joint space can be
used.

5.2. Curiosity-driven Abstraction Learning: Curious Dr. MISFA
At the core of the CCSA framework is the Curiosity Driven Modular Incre-

mental Slow Feature Analysis Algorithm (Curious Dr. MISFA; [47, 48]).3 The
order in which skills are acquired in the CCSA framework is a direct consequence
of the order in which the abstractions are learned by the Curious Dr. MISFA algo-
rithm. The input to the Curious Dr. MISFA algorithm is a set of high-dimensional
observation streams X = {x1, ...,xn : xi(t) ∈ RI , I ∈ N}, generated by the

3A Python-based implementation of Curious Dr. MISFA can be found at the URL: www.idsia.
ch/˜kompella/codes/.
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Figure 5: Architecture of Curious Dr. MISFA includes (a) a reinforcement learning agent that gener-
ates observation-stream selection policy based on intrinsic rewards, (b) an adaptive Incremental SFA
coupled with Robust Online Clustering module that updates an abstraction based on the incoming
observations, and (c) a gating system that prevents encoding observations that have been previously
encoded.

input exploratory-option’s policies. The result is a slow feature abstraction φi cor-
responding to the easiest yet unknown observation stream. Apart from learning the
abstraction, the learning process also involves selecting the observation stream that
is the easiest to encode. To this end, Curious Dr. MISFA uses reinforcement learn-
ing to learn an optimal observation-stream selection policy, based on the intrinsic
rewards proportional to the progress made while learning the abstraction. In this
section, we briefly review the architecture of Curious Dr. MISFA.

Figure 5 illustrates the architecture of Curious Dr. MISFA, which includes (a)
a reinforcement learning (RL) agent that generates an observation-stream selection
policy based on intrinsic rewards, (b) an adaptive Incremental Slow Feature Analy-
sis coupled with Robust Online Clustering (IncSFA-ROC) module that updates an
abstraction based on the incoming observations, and (c) a gating system that pre-
vents encoding observations that have been previously encoded. The RL agent is
within an internal environment that has a set of discrete states S int = {sint

1 , ..., s
int
n },

equal to the number of observation streams. In each state sint
i , the agent is allowed

to take only one of the two actions (Aint): stay or switch. The action stay makes the
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agent’s state to be the same as the previous state, while switch randomly shifts the
agent’s state to one of the other internal states. The agent at each state sint

i , receives
a fixed τ time step sequence of observations (x) of the corresponding stream xi.

It maintains an adaptive abstraction φ̂ ∈ RI×J , φ̂ 6∈ Φt that updates based on
the observations x via IncSFA-ROC abstraction-estimator. The agent receives in-
trinsic rewards proportional to the learning progress made by IncSFA-ROC. The
observation stream selection policy πint : S int × Aint → [0, 1] is learned from the
intrinsic rewards and then used to select the observation stream for the next itera-
tion, yielding new samples x. These new samples, if not encodable by previously
learned abstractions, are used to update the adaptive abstraction. The updated ab-
straction φ̂ is added to the abstraction set Φt, when the IncSFA-ROC’s estimation
error falls below a low threshold δ. If and when added, a new adaptive abstraction
φ̂ is instantiated and the process continues. The rest of this section discusses more
details on different parts of the Curious Dr. MISFA algorithm.

Abstraction-Estimator: Curious Dr. MISFA’s abstraction estimator is the In-
cremental Slow Feature Analysis (IncSFA; [46]) coupled with a Robust Online
Clustering (ROC; [75, 76]) algorithm. IncSFA is used to learn real-valued abstrac-
tions of the observations, while ROC is used to learn a discrete mapping between
the abstraction outputs y and the agent’s abstracted-state space SΦ. In particular,
each abstracted state (sΦ ∈ SΦ) has an associated ROC implementation node that
estimates multiple cluster centers within the slow-feature outputs.

IncSFA is an incremental version of Slow feature analysis (SFA; [14]), which
is an unsupervised learning technique that extracts features from an observation
stream with the objective of maintaining an informative but slowly-changing fea-
ture response over time. SFA is concerned with the following optimization prob-
lem: Given an I-dimensional input signal x(t) = [x1(t), ..., xI(t)]

T , find a set
of J instantaneous real-valued functions g(x) = [g1(x), ...,gJ(x)]T, which to-
gether generate a J-dimensional output signal y(t) = [y1(t), ..., yJ(t)]T with
yj(t) = gj(x(t)), such that for each j ∈ {1, ..., J}

∆j = ∆(yj) = 〈ẏ2
j 〉 is minimal (7)

under the constraints
〈yj〉 = 0 (zero mean), (8)

〈y2
j 〉 = 1 (unit variance), (9)

∀i < j : 〈yiyj〉 = 0 (decorrelation and order), (10)

with 〈·〉 and ẏ indicating temporal averaging and the derivative of y, respectively.
The goal is to find instantaneous functions gj generating different output signals
that are as slowly varying as possible. The decorrelation constraint (10) ensures that
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different functions gj do not code for the same features. The other constraints (8)
and (9) avoid trivial constant output solutions. SFA operates on the covariance of
observation derivatives, so it scales with the size of the observation vector instead
of the number of states. SFA is originally realized as a batch method, requiring
all data to be collected before processing. The algorithmic complexity is cubic in
the input dimension I . By contrast, Incremental SFA (IncSFA) has a linear update
complexity [46], and can adapt the features to new observations, achieving the slow
feature objective robustly in open-ended learning environments.

ROC is a clustering algorithm similar to an incremental K-means algorithm [77]
— a set of cluster centers is maintained, and with each new input, the most sim-
ilar cluster center (the winner) is adapted to become more like the input. Unlike
K-means, with each input it follows the adaptation step by merging the two most
similar cluster centers, and creating a new cluster center at the latest input. In
this way, ROC can quickly adjust to non-stationary input distributions by directly
adding a new cluster for the newest input sample, which may mark the beginning
of a new input process.

Estimation error and Curiosity Reward. Each ROC-Estimator node j has an
associated error ξj . These errors are initialized to 0 and then updated whenever
the node is activated by: ξj(t) = min

w
‖y(t)− vw‖, where y(t) is the slow-feature

output vector, vw is the estimate of the wth cluster of the activated node and ‖.‖
represents L2 norm. The total estimation error is calculated as the sum of stored

errors of the nodes: ξ(t) =

p∑
j=1

ξj(t). The agent receives rewards proportional to

the derivative of the total estimation error, which motivates it to continue executing
an option that is yielding a meaningful learnable abstraction. The agent’s reward
function is computed at every iteration from the curiosity rewards (ξ̇) as follows:

Rint(sint, sint
− , a

int) = (1− η) Rint(sint, sint
− , a

int) + η
t+τ∑
t

−ξ̇(t),

where 0 < η < 1 is a discount factor, τ is the duration of the current option until
its termination, (sint, sint

− ) ∈ S int and aint ∈ {stay, switch}.
Observation-Stream Selection Policy. The transition-probability model P int of

the internal environment is similar to a complete graph and is given by:

P int
i,j,stay =

{
1, if i = j

0, if i 6= j
, P int

i,j,switch =

{
0, if i = j

1
N−1 , if i 6= j

, (11)

∀i, j ∈ [1, ..., N ]. Using the current updated model of the reward function Rint

and the internal-state transition-probability model P int, we use model-based Least
Squares Policy Iteration [53] to generate the agent’s internal-policy πint : S int →
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{stay, switch} for the next iteration. The agent uses decaying ε-greedy strategy [5]
over the internal policy to carry out an internal-action (stay or switch) for the next
iteration.

Module Freezing and New Module Creation. Once the adaptive (training) mod-
ule’s φ̂ estimation error gets lower than a threshold δ, the agent freezes and saves
the IncSFA-ROC module, resets the ε-greedy value and starts training a new mod-
ule.

Gating System and Abstraction Assignment. The already trained (frozen) mod-
ules represent our learned library of abstractions Φt. If a trained module’s esti-
mation error within an option is below the threshold δ, that option is assigned that
module’s abstraction and the adaptive training module φ̂ will be prevented from
learning via a “gating signal” (see Figure 5). There will no intrinsic reward in this
case. Hence the training module φ̂ will encode only data from observation streams
that were not encoded earlier. Input badly encoded by all other trained modules
serve to train the adaptive module.

5.3. Learning a Target Option

From the set of observations streams generated by the input exploratory op-
tions, Curious Dr. MISFA learns a slow feature abstraction (say φi) correspond-
ing to the estimated easiest-yet-unlearned exploratory option stream (say xj). The
abstraction’s output stream yi = φi(xj) has a zero-mean and unit-variance over
time [46], and is a lower-dimensional representation of the input xj (satisfies Con-
straint (1); see Section 4.1.2). The output values yi(t) are discretized to a set of
abstraction states SΦ

φi
, which represent the newly discovered abstracted states of

the agent. A deterministic target option is then constructed as follows:
Initiation Set (IL): The initiation set is simply the product state-space: ILi =

(Iej×SΦ
φi

). Therefore, the option is now defined over a larger abstracted-state space
that includes the newly discovered abstraction states.

Target Option Policy (πL): The target option policy πLi : ILi → A must be
done in such a way as to satisfy Constraint (4). To this end, we use Model-based
Least-Squares Policy Iteration Technique (LSPI; [53]) over an estimated transition
and reward models. The target-option’s transition model POLi has been continu-
ally estimated from the (sΦ, a, sΦ

−) samples generated via the exploratory-option’s
policy πej . As to estimate the reward function, the agent uses rewards proportional
to the difference of subsequent abstraction activations:

rO
L
i (t) = ‖yi(t)− yi(t− 1)‖ (12)

RO
L
i (sΦ, a) = (1− α)RO

L
i (sΦ, a) + αrO

L
i (t), (13)
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where yi(t) = φi

(
U(P(s−, π

e
j (s

Φ
−)))

)
and yi(t − 1) = φi

(
U(P(s, πej (s

Φ)))
)

,
s− and s are the corresponding environment states, P is the unknown transition-
model of the environment. 0 < α < 1 is a constant smoothing factor. Once the
estimated transition and reward models stabilize, LSPI follows the RL objective
and learns a policy πLi that maximizes the expected cumulative reward over time:

πLi = arg sup
π

E

[ ∞∑
t=0

γtrO
L
i (t)

∣∣∣π,ROLi ] , (14)

where γ is a discount factor close to 1. Therefore, πLi maximizes the average activa-
tion differences, which is equivalent to maximizing variance of the activations [78]
(approximately4 satisfying Constraint (4)).

Termination Condition (βL): The option terminates whenever the agent reaches
the abstracted-state where it observes the maximum reward max

(s,a)
RO

L
i .

Each target option learned is added to the target-option set OL and the learn-
ing process iterates until all the learnable exploratory option streams are encoded.
Since the expected behavior of Curious Dr. MISFA ensures that the Constraints (1-
3) are satisfied [47] and the learned target-option’s policy satisfies Constraint (4),
the target-option set OL, at any time t, therefore satisfies the required constraints.

In Section 4, we discussed an alternative to Constraint (4), where different
dimensions of the learned abstraction may be used to learn multiple policies, re-
sulting in a set of sub-target options. To keep it simple, we used all dimensions
of an abstraction to learn a target-option’s policy. However, a sub-target option set
can be constructed by following the approach discussed above. Multiple reward
functions can simultaneously be estimated from the (sΦ, a, sΦ

−) samples generated
via exploratory-option’s policy, and the set of sub-target options can be constructed
via least-squares policy iteration in parallel.

5.4. Reusing Target Options

To make the skill acquisition open-ended and to acquire more complex skills
(see Section 4.2), the learned target optionOL can be used to explore the newly dis-
covered abstracted-state space (see Section 5.3). However, a target option may not
be reused straight-away, since by definition, it differs from an exploratory option,
wherein the target-option’s policy is deterministic, while the exploratory-option’s

4The error between the true and the estimated target-option policy depends on how well the transi-
tion and reward models are estimated based on the samples (sΦ, a, sΦ

−) generated by the exploratory-
option’s policy.
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Figure 6: Reuse of the learned target options. For each target option learned (represented by pink
dotted box), two new exploratory options (Biased Initialization and Explore and Policy Chunk and
Explore) are added to the input exploratory-option (represented by red dashed boxes) set. Biased
Initialization and Explore option biases the agent to explore first the state-action tuples where it had
previously received maximum intrinsic rewards, while the Policy Chunk and Explore option executes
the deterministic target-option’s policy before exploration.

policy is stochastic (see Section 5.1). We construct two new exploratory options
instead, which are based on the target option OLi that was learned last.

In the first option, called policy chunk and explore, the initiation-set is the
same as that of learned target option Ien+1 = ILi . The policy combines the target-
option’s policy πLi , which terminates at the state where the variance of subsequent
encoded observations is highest, with the LSPI-Exploration policy described in
Section 5.1. Every time this policy is initiated, the policy-chunk (A policy chunk
is a non-adaptive frozen policy) πLi is executed, followed by the LSPI-Exploration
policy. This can be beneficial if the target option terminates at a bottleneck state,
after which the agent enters a “new world” of experience, within which the LSPI-
Exploration policy is useful to explore.

In the second option, called biased initialization and explore, the exploratory-
option’s policy uses the normalized value function of the target option as an initial
reward function estimate. This initialization biases the agent to explore first the
state-action tuples where it had previously received maximum intrinsic rewards.
Otherwise it is the same as the standard initial error-seeking LSPI-Exploration pol-
icy.

For each target option learned, these two exploratory options are added to
the input exploratory-option set. In this way, the agent continues the process of
curiosity-based skill acquisition by exploring among the new exploratory option
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Algorithm 1: INT-POLICY-UPDATE (x)

// Curious Dr. MISFA Internal Policy Update

1 Abstraction-Learned← False // Abstraction learned or not.

2 φ← Gating-System(x) //Get the assigned abstraction.

3 ξt+1 = ‖Θ(x, φ)− φ‖ //Estimation Error

4 if 〈ξt+1〉τ > δ then
5 φ̂← Θ(x, φ̂) //Update the adaptive-abstraction

6 if 〈‖Θ(x, φ̂)− φ̂‖〉τ < δ then
7 Φt+1← Φt ∪ φ̂ // Update abstraction set

8 Abstraction-Learned← True
9 end

10 end
11 Rint

t+1← UpdateReward (ξ̇t+1) //Update the int. reward func.

12 πint
t+1←Model-LSPI (P int, Rint

t+1) //Update int. policy

13 πint
t+1← ε-greedy (πint

t+1) //Exploration-exploitation tradeoff

14 return (πint
t+1, Abstraction-Learned)

set to discover unknown regularities. A complex skill OLk = 〈ILk , βLk , φk, πLk 〉 can
be learned as a consequence of chaining multiple skills that were learned earlier.

5.5. Pseudocode

The entire learning process involves determining three policies:
1. πe: Exploratory-option’s stochastic policy that is determined (see Section 5.1)
to generate high-dimensional observations.
2. πint: An internal policy that is learned (see Section 5.2) to determine for which
exploratory option Oe to encode a slow feature abstraction.
3. πL: Target-option’s deterministic policy that is learned (see Section 5.3) to
maximize variation in the slow feature abstraction output.
The resultant target options (skills) are stored and reused as discussed above to
facilitate open-ended continual learning. Algorithms 1 and 2 summarize the entire
learning process.5

5Python-based code excerpts can be found at the URL: www.idsia.ch/˜kompella/
codes/.
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Algorithm 2: CONTINUAL CURIOSITY-DRIVEN SKILL ACQUISITION (CCSA)

1 Φ0← {}, π0← RANDOM (), φ̂← 0, Abstraction-Learned← False
2 for t← 0 to∞ do
3 sint← current internal state, aint ← action selected by πint

t in state sint

4 Take action aint, observe next internal state sint
− (= i)

// Execute the exploratory option Oe
i

5 while not βei (t) do
6 sΦ← current abstracted-state, a← action selected by πei in state sΦ

7 Take action a, observe next abstracted-state sΦ
− and the sample x

8 if not Abstraction-Learned then
// Internal Policy Update

9 (πint
t+1, Abstraction-Learned) = Int-Policy-Update (x)

10 else
// Learn target option

11 πint
t+1← πint

t , Rprev← RO
L

, Pprev← PO
L

12 RO
L

(sΦ, a) = (1− α)RO
L

(sΦ, a) + α(‖yi(t)− yi(t− 1)‖)
13 PO

L
(sΦ, a, sΦ

−) = (1− α)PO
L

(sΦ, a, sΦ
−) + α

14 if (‖ROL −Rprev‖ < δ and ‖POL − Pprev‖ < δ) then
15 πL← LSPI-Model(PO

L
, RO

L
)

16 OL = 〈IL, βL, φ̂, πL〉 // Construct target option

17 OL←OL ∪OL // Add to target-option set

// Construct two new exploratory options

18 Oe←Oe ∪ Biased-Init-Explore(OL)
19 Oe←Oe ∪ Policy-Chunk-Explore(OL)
20 φ̂← 0, Abstraction-Learned← False // Reset

21 end
22 end
23 end
24 end

6. Experimental Results

We present here experimental results that focus on continual-learning of skills
using an iCub humanoid platform. More studies on the types of representations
learned by the IncSFA algorithm and curiosity-based abstraction learning with Cu-
rious Dr. MISFA can be found elsewhere [47, 48, 46, 68]. The results here are
the first in which a humanoid robot such as an iCub, learns a repertoire of skills
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Figure 7: (a) An iCub robot is placed next to a table, with an object (a plastic cup) in reach of its
right arm and within its field-of-view. (b) Sample input images captured from both left and right
iCub camera-eyes are an input to the algorithm.

from raw-pixel data in an online manner, driven by its own curiosity, starting with
low-level joint kinematic maps.6

Learning a skill-set largely depends on the environment that the robot is in. For
the sake of developing specific types of skills such as toppling an object, grasping,
etc., we pre-selected a safe environment for the iCub to explore, yet the iCub is
mostly unaware of the environment properties.
Environment: Our iCub robot is placed next to a table, with an object (a plastic
cup) in reach of its right arm and within its field-of-view (Figure 7(a)). The cup
topples over upon contact, and the resulting images after toppling are predictable.
There is a human experimenter present, who monitors the robot’s safety and re-
places the cup in its original position after it is toppled. The iCub does not “know”
that the plastic-cup and the experimenter exist. It continually observes the gray-
scale pixel values from the high-dimensional images (75 × 100) captured by the
left and right camera eyes (Figure 7(b)). In addition to the experimenter and the
cup, it also cannot recognize its own moving hand in the incoming image stream,
as shown in the Figure 7(b).
Task-Relevant Roadmap We do not induce exploration at the level of joint angles,
due to the complexity of the robot’s joint space. Instead we give the robot a map
of poses a priori. This compressed actuator joint-space representation is called a
Task-Relevant Roadmap (TRM; [50]). This map contains a family of iCub pos-
tures that adhere to relevant constraints. The TRM is grown offline by repeatedly
optimizing cost-functions that represent the constraints, using a Natural Evolution
Strategies (NES; [79]) algorithm, such that the task-space is covered. This allows

6A video for these experiment can be found at URL: http://www.youtube.com/watch?
v=OTqdXbTEZpE
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us to deal with complex cost-functions and the full 41 degrees-of-freedom of the
iCub’s upper body. The constraints used: (a) the iCub’s hand is positioned on a 2D
plane parallel to the table while keeping its palm oriented horizontally, (b) the left
hand is kept within a certain region to keep it out of the way, and (c) the head is
pointed towards the table. The task-space of the TRM comprises the x and y posi-
tion of the hand, which forms the initial discretized 10 × 5 abstracted-state space
SΦ = SΦ

x × SΦ
y . The action space contains 6 actions: move North, East, South,

West, Hand-close and Hand-open.
Because the full body is used, the movements look more dynamic, but as a

consequence, the head moves around and looks at the table from different direc-
tions, making the task a bit more difficult. Even so, IncSFA still finds the resulting
regularities in the raw camera observation stream, and the skill learner continues to
learn upon these regularities, without any external rewards.
Experiment parameters: We use a fixed parameter setting for the entire experi-
ment.

IncSFA Algorithm: IncSFA has two learning update rules [46]: Candid-Covariance
free Incremental Principal Component Analysis (CCIPCA; [80]) for normalizing
the input and Minor Component Analysis (MCA; [81]) for extracting slow fea-
tures. For CCIPCA, we use learning rates 1/t with amnesic parameter 0.4, while
for MCA the learning rate is set to 0.01. CCIPCA does variable size dimension
reduction by calculating how many eigenvalues would be needed to keep 99% of
the input variance — typically this was between 5−10 — so the 7500 pixels could
be effectively reduced to only about 10 dimensions. The output dimension is set to
1, therefore, we use only the first IncSFA feature as an abstraction. However, more
number of features can be used if desired.

Robust Online Clustering (ROC) Algorithm: ROC algorithm maps slow-feature
outputs to abstracted states (see Section 5.2). Each clustering implementation has
its maximum number of clusters set to Nmax = 3, such that it can encode multiple
slow feature values for each abstracted state. Higher values can be used, however,
very high values may lead to spurious clusters. The estimation error threshold,
below which the current module is saved and a new module is created, is set to a
low value δ = 0.3. The amnesic parameter is set to βamn = 0.01. Higher values
will make ROC adapt faster to the new data, however at the cost of being less
stable.

Curious Dr. MISFA’s Internal Reinforcement Learner: To balance between ex-
ploration and exploitation, ε-greedy strategy is used (see Section 5.2). The initial
ε-greedy value is set to 1.0 (1.0 for pure exploration, 0.0 for pure exploitation), with
a 0.995 decay multiplier. The window-averaging time constant is set to τ = 20,
that is, 20 sample images are used to compute the window-averaged progress error
ξ and the corresponding curiosity-reward (see Section 5.2).
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Target-option’s Reinforcement Learner: Slow features abstractions have unit-
variance and are typically in the range of (−1.5, 1.5) [46]. Since in our experiments
we are expecting step-like slow features, to keep it simple, each abstraction-output
values are discretized to either (−1, 1), therefore into two |Sφi | = 2 abstracted
states.

Experiment Initialization: The iCub’s abstracted-state space (SΦ) at t = 0 is
a 10 × 5 grid found using TRM. To minimize human input into the system, the
input exploratory-option set (Oe) has only one exploratory option to begin with
(as defined in Section 5.1): Oe = {Oe1}, which is a random-walk in the iCub’s
abstracted-state space. However, one may pre-define multiple input exploratory
options, which could lead to a different result. The exploratory option terminates
after τ = 20 time steps since its execution. The internal state-space at t = 0 is
S int = {sint

1 }, where sint
1 corresponds to the exploratory option Oe1. The plastic cup

is roughly placed around (2, 2) grid-point on the table.

6.1. iCub Learns to Topple the Cup

The iCub starts the experiment without any learned modules, so the exploratory-
option’s policy πe1 is a random-walk over the abstracted state space SΦ (see Section
5.4). It explores by taking one of the six actions: North, East, South, West, Hand-
close and Hand-open and grabs high-dimensional images from its camera-eyes.
The exploration causes the outstretched hand to eventually displace or topple the
plastic-cup placed on the table. It continues to explore and after an arbitrary amount
of time-steps the experimenter replaces the cup to its original position. After every
τ time-steps, the currently executing option terminates. Since there is only one ex-
ploratory option, the iCub re-executes the same option. Figure 8(a) shows a sample
input image stream of only the left-camera.7

Figure 8(b) shows the developing IncSFA output over the algorithm execution
time, since the IncSFA abstraction was created. The outcome of IncSFA abstraction
learning is a step-like function, which when discretized, indicates the pose of the
cup (toppled vs non-toppled). Figure 8(c) shows the ROC estimation error (blue
solid line) and an Expected Moving Average (EMA) of the error (green dashed line)
over the algorithm execution time. As the process continues, the error eventually
drops below the threshold δ = 0.3 and the abstraction module φ1 is saved. Figure
9(a) shows the ROC cluster centers that map the feature outputs (y) to each of the
10 × 5 abstracted states. There are two well separated clusters each representing
the state of the plastic-cup.

7We, however, used both the left and right camera images as an input observation by concatenat-
ing them.
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Figure 8: (a) A sample image stream of the iCub’s left-eye camera showing the topple event. (b)
Developing IncSFA abstraction output over algorithm execution time, since it was created. The
result is a step-like function encoding the topple event. (c) ROC estimation error over algorithm
execution time. The estimation error eventually drops below the threshold (δ = 0.3), after which the
abstraction is saved.

Immediately after the abstraction is saved, the cluster centers are discretized
(Red and yellow colors indicate the discretized feature states SΦ

φ1
in Figure 9(a)),

the transition model (represented by the blue lines in Figure 9(a)) and reward model
of OL1 are learned, followed by a corresponding target-option’s policy πL1 as dis-
cussed in Section 5.3. Figure 9(b) shows a part of the learned policy πL1 before
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Figure 9: (a) The resultant ROC cluster centers, which map the abstraction outputs to the abstracted-
state space (in this case the X and Y grid locations of the iCub’s hand). Red and yellow colors
indicate the discretized feature states SΦ

φ1
. Blue lines connecting the cluster centers illustrate the

learned transition model of the new abstracted-state space. (b) Part of the learned target-option’s
policy before the cup is toppled. The arrows indicate the optimal action to be taken at each grid-
location (sΦ

x , s
Φ
y ) of the iCub’s hand. They direct the iCub’s hand to the grid point (1, 3), which will

make the iCub topple the cup placed at (2, 2). (c) Part of the learned target-option’s policy after the
cup is toppled. They direct the iCub’s hand to move to the right. This is a result of the experimenter
replacing the cup only when the iCub has moved its hand away from the (2, 2) grid location.

the cup is toppled. The arrows indicate the optimal action to be taken at each grid-
location of the iCub’s hand. They direct the iCub’s hand to the grid point (1, 3),
which will make the iCub topple the cup placed at (2, 2). Figure 9(c) shows the part
of the policy after the cup has been toppled. The policy directs the iCub’s hand to
move towards east. This is because, during the experiment the experimenter hap-
pened to replace the cup only when the iCub’s hand is around far east. We label
the learned target option OL1 , for the given environment, as a “Topple” skill.

6.2. iCub Learns to Grasp the Cup

The iCub continues its learning process by reusing the learned topple skill to
construct two additional exploratory options as discussed in Section 5.4. One in
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Figure 10: (a) Sample iCub’s left-eye camera images corresponding to the three input exploratory
options. x1 and x2 correspond to the original and the policy chunk & explore exploratory option
respectively, while x3 corresponds to the biased init. & explore exploratory option. (b) Normalized
value function of the previously learned target option (topple). It is used for reward-initialization in
the biased init. & explore exploratory option. (c) Estimation error of the learned topple abstraction
module (φ1) for each of the three observation-streams. (d)-(i) LSPI-Exploration reward function
estimated using the novelty (& curiosity) signal. The Hand-Close action at (2, 2) has the maximum
reward value due to the novel grasp event.
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Figure 11: (a) ROC estimation error of the current adaptive-module that is encoding the new regu-
larities. (b) Normalized internal-reward function of Curious Dr. MISFA. The action stay in the state
corresponding to the exploratory option 3 (shown as sint

3 -St) is most rewarding due to the learning
progress made by the IncSFA-ROC module for the grasp-event. (c) IncSFA output over execution
time, since it was created. (d) Resultant ROC cluster centers mapping the IncSFA output w.r.t. the
abstracted-state space. Note that the abstracted states corresponding to the learned topple abstraction
SΦ
φ1

are not shown here, since the grasp abstraction outputs are uncorrelated to the topple abstraction
and it is difficult to illustrate a 4-D plot. Red and yellow colors indicate the discretized states SΦ

φ2

and the blue lines illustrate the learned transition model.

which the topple policy (Figure 9(b)) is executed prior to the LSPI-Exploration
policy and the other, where the normalized value function (Figure 10(b)) is used to
initialize the reward-function of the LSPI-Explorer. Let Oe2 and Oe3 denote these
two exploratory options respectively. Therefore, including the original exploratory
option Oe1, a total of 3 exploratory options are an input to CCSA.

Initially, the system explores by executing each of the options until termination,
i.e., after τ time steps. When it selects either Oe1 or Oe2, the cup gets toppled in the
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process (Figure 10(a)-Top) and since there already exists a learned abstraction φ1

that encodes the toppling outcome, it receives no internal reward for executing
these options because of the gating system (see 5.2). This is also the case in the be-
ginning while executing Oe2, because the LSPI-Exploration policy initially causes
the iCub to topple the cup, yielding no rewards. The initialized values correspond-
ing to the visited state-action tuples soon vanish and the iCub then explores the
neighboring state action pairs. Eventually, as a result of the biased exploration, in a
few algorithm iterations the iCub ends up grasping the cup (Figure 10(a)-Bottom).
This gives rise to a high estimation error because of the novelty of the event (Figure
10(c)). Figures 10(d)-(i) show the state-action LSPI-Exploration reward function
after a few time steps. The hand-close action at (2, 2) generates the most novel
event. This results in a LSPI-Exploration policy that increases the number of suc-
cessful grasp trials (77 out of 91 total attempts, with most of the unsuccessful trials
in the beginning) when the exploratory option Oe3 is executed.

Now, upon executing option Oe3, the adaptive abstraction φ̂ begins to make
progress by encoding samples corresponding to the observation stream x3. After a
few algorithm iterations, the agent finds that the action stay at the internal state sint

3

corresponding to the Oe3 is rewarding due to the progress made by IncSFA and the
ROC estimator (Figure 11(a)). Figure 11(b) shows the normalized internal reward
function of Curious Dr. MISFA over algorithm iterations, since the new adaptive
module was created. The internal policy πint quickly converges to select and exe-
cute the option Oe3 to receive more observations. When the estimation error drops
below the threshold (δ = 0.3), it saves the module φ2 = φ̂. Figure 11(c) shows the
IncSFA output over the time since the new module was created. Figure 11(d) shows
the learned cluster centers mapping the slow-feature output to the abstracted-state
space. Note that the abstracted states corresponding to the learned topple abstrac-
tion SΦ

φ1
and not are shown in Figure 11(d), because the grasp abstraction outputs

are uncorrelated to the topple abstraction and it is difficult to illustrate a 4-D plot.
The iCub then begins to learn the target policy πL2 by learning the target-option’s
transition and reward model. Figure 12(a)-(f) show the target-option’s state-action
reward model developed after 8000 observation samples (module time=8000). And
finally, Figure 12(g) shows the corresponding skill learned, i.e., to perform a Hand-
Close at (2, 2) (the anti clockwise circular arrow represents the Hand Close action).

This experiment demonstrated how the iCub reused the knowledge gained by
the topple skill to learn a subsequent skill labeled as “Grasp”. The grasp skill
includes an abstraction to represent whether the cup has been successfully grasped-
or-not and a policy that directs the iCub’s hand to move to (2, 2) and then to close
its hand.
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Figure 12: (a)-(f) Estimated reward-function of the new abstracted-state space that is used to learn the
target-option’s policy. The hand-close action at (2, 2) receives the maximum reward as it produces
a maximum variation in the slow-feature output (from ≈ −1.5 to 1.5). (g) Learned target-option’s
policy representing the grasp skill. The arrows indicate the optimal actions to be taken at each grid-
location (sΦ

x , s
Φ
y ). The circular arrow represents the hand-close action. The policy directs the iCub’s

hand to move to (2, 2) and then to close its hand, which should result in a successful grasp.

6.3. iCub Learns to Pick and Place the Cup at the Desired Location

We present here an experiment to demonstrate the utility of intrinsic motivation
in solving a subsequent external objective. The iCub is in a similar environment
as discussed above. However, it is given an external reward if it picks the plastic
cup and places (drops) it at a desired location (at any of the following grid locations
(sΦ
x , s

Φ
y ): (6, 2), (6, 3), (6, 1), (5, 2), (7, 2)). The agent with no intrinsic motivation

finds the reward almost inaccessible via random exploration over its abstracted-
state space SΦ, because the probability of a successful trial is low.8 (≈ 10−5)
However, a curiosity driven iCub greatly improves this by learning to pick/grasp
the cup by itself and then reusing the skill to access the reward.

Starting from the 10×5 abstracted-state space found via TRM, the iCub learns
to topple and then grasp as discussed in the previous sections. The process contin-
ues and it adds two more exploratory options (Oe4, O

e
5) corresponding to the grasp

skill as discussed in Section 5.4. The biased initialization and explore option Oe4
results in the iCub dropping the cup close to where it has picked it up. Since it
doesn’t get any reward in this case, the initialized values to the visited state-actions
tuples vanish and it explores the neighboring state-action tuples. This option will
take a long time before it can execute the desired state-action tuple to drop the
cup. The policy chunk and explore option Oe5, however, first executes the grasp
policy and then randomly explores until it receives some novelty or curiosity re-

8The probability of a successful pick = 1/300, probability of a drop given a successful pick =
1/300 * 1/60.
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Figure 13: (a) CCSA now has 5 exploratory options as an input. Among the 5 options, only the
policy chunk & explore corresponding to the grasp skill makes it easier for the iCub to access the
external-reward present for placing the cup at the desired grid locations. This results in a policy – to
place the cup in the desired location (the clockwise circular arrow represents the Hand-Open action).
(b) Bird’s eye view of the iCub demonstrating the pick & place skill. (b) Figure shows the increasing
dimensions in the agent’s abstracted-state space with every new abstraction learned. This experiment
demonstrates how CCSA enables the iCub to reuse the grasp skill, which was previously learned via
intrinsic motivation, on learning to pick & place the cup to a desired location.

ward. When, it drops the cup in one of the desired states while exploring, it gets
an external reward, which results in a LSPI-Exploration policy that executes the
rewarding behavior. Curious Dr. MISFA eventually finds the internal action stay
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at the internal-state sint
5 corresponding to the option Oe5 most rewarding. As soon

as the experimenter replaces the cup, the iCub repeats the pick and place behavior
until the external reward is removed.

This experiment demonstrated how CCSA enabled the iCub to reuse the grasp
skill, which was previously learned via intrinsic motivation, on learning to pick
and place the cup to a desired location. Note that in our experiments, a human
experimenter unknown to the robot, acted as a part of the environment to speed up
the learning process. Without the experimenter, the robot might not have acquired
the same set of skills, instead it might have learned to push the object (refer to our
previous work [48] for an experiment where a simulated iCub learns a slow feature
abstraction that encodes a push).

7. Discussion

While, much of the research in humanoid robot learning has been based upon
human demonstrations, human-given task-descriptions, or pre-processed inputs,
CCSA makes an important step towards combining several aspects needed to de-
velop an online, continual curiosity-driven humanoid robotic agent. In the follow-
ing we briefly discuss these aspects along with current limitations of our framework
and insights for future work:

Raw High-Dimensional Information Processing. CCSA uses a linear IncSFA
algorithm updated online directly from raw-pixels to encode abstractions that lead
to acquiring skills. To learn more complex skills however, CCSA might bene-
fit from extracting non-linearities in the video inputs. Hierarchical extensions of
IncSFA (H-IncSFA) over an expanded input in quadratic space [82] may remedy
this. We plan to combine non-linear hierarchical structures to further improve the
quality of the abstractions learned.

Invariant Skills. The skill labeled “grasp” in our experiments actually rep-
resents “grasp the cylindrical cup from the particular location in the given envi-
ronment, invariant to the experimenter’s actions and the iCub’s head/body move-
ments”. The invariance picked up by the skills acquired in our system largely
depend on the invariance learned by IncSFA from the observations sensed by the
exploring iCub. Refer to our previous work [47, 46] for more details on invariance
extracted by IncSFA. In our experiments however, if the human experimenter had
replaced the cup at different locations whenever the cup was toppled or dropped,
we expect IncSFA to learn an abstraction that encodes whether the cup has been
grasped-or-not invariant to the cup’s position (because the events are uncorrelated).
This would result in a “grasp skill” that is invariant to the cup’s position.
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Figure 14: (a) The higher-order complex skills acquired using CCSA, are in the form of a chain-like
hierarchy. There exists only a single chain-link (shown as a unique color) connecting higher-order
to lower-order skills. This is because, a target option in CCSA is learned using observations only
from one of the exploratory options. (b) An illustration of a node in a chain hierarchy. Each node
has only a single input but can act as an input to many nodes. (c) Whereas, a node in a compositional
hierarchy can have multiple inputs.

Continual Learning. CCSA uses previously acquired knowledge in the form
of biased explorations or policy-chunks, to learn more complex skills. This facil-
itates continual learning of skills. A previously acquired skill may be refined or
adapted to suit to changing environments. For example, in our experiments, if the
cup’s position has changed after acquiring the grasp skill, the biased init. and ex-
plore exploratory-option corresponding to the grasp skill can speed up learning a
new skill to grasp the cup from the new position. However, the old skills are still
retained and reused if the cup’s position is changed back to its original position.
The complex skills acquired using CCSA are in the form of a chain-like hierarchy
(Figure 14(a)), i.e., there exists only a single chain-link connecting higher-order
to lower-order skills. This is because, a target option in CCSA is learned us-
ing observations only from one of the exploratory options (see Section 4). Each
node in the chain-like hierarchy has only a single input but can act as an input to
many nodes (Figure 14(b)). Whereas, a node in a general compositional hierar-
chy (Figure 14(c)) can have multiple inputs. One way to achieve compositional
hierarchy in CCSA is to add the learned target options to the primitive action set
A = {North, East, South, West, Hand-close and Hand-open}.

Environment Openness. CCSA could benefit from a larger set of pre-defined
input exploratory options. However, to minimize human inputs into the system,
in our experiments the iCub starts with only a single exploratory option (random-
walk) and autonomously adds more exploratory options derived from the learned
target options. Since CCSA acts directly on raw-pixels, no prior calibration of the
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robot cameras are required. Algorithm parameters are intuitive to tune. Refer to
our previous work [47, 48, 46, 68] for a detailed description on tuning IncSFA and
Curious Dr. MISFA algorithms. Therefore, CCSA can be used in different environ-
ments (and different humanoid robots) without making any design changes to the
learning algorithm. On the motor end, we used a kinematic map that transforms the
41 degrees-of-freedom of the iCub joint configurations to 2D positions of its hand
parallel to the table. For more complex manipulations, which are required for han-
dling complicated objects, higher dimensional kinematic-maps could be used [50].
As our future work, we plan on using different approaches to tackle easier and safer
manipulation with the iCub.

Quality of Skills Acquired. We presented formally the underlying learning
problem as a constrained optimization problem. The objective function can be
used as a metric to tune different parameters of the method. However, the met-
ric does not sufficiently evaluate the quality of skills acquired. One major factor
is the type of the abstraction-estimator used. For example, a method that uses
a simpler abstraction learning algorithm may acquire a large number of skills,
which could be functionally equivalent to acquiring a single skill of a more dis-
criminative abstraction estimator. Therefore, evaluating different task-unrelated
intrinsically-motivated (IM) approaches without providing an external goal is an
ill-posed problem. As our future work, we plan to build realistic, task-independent,
skill-acquisition benchmarks with hidden external tasks to evaluate multiple IM ap-
proaches.

Scalability. For each target option acquired by CCSA, the number of input
exploratory options increases by a value of two (See Section 5.4). Observations
from previously encoded exploratory options are automatically filtered out due to
the gating system of Curious Dr. MISFA. Therefore, for each target option ac-
quired, the number of unknown exploratory options increases by a value of only
one. Hence, the space of input exploratory options scales linearly with respect to
the number of skills acquired.

Sensor Fusion. And finally, CCSA uses only visual inputs from the onboard
cameras and joint angles of the iCub. A humanoid-robot’s actions can be improved
however, by using different sensory modalities such as tactile and audio in addi-
tion to the visual inputs. This should be straightforward addition to CCSA, since
IncSFA is agnostic to the modality of sensory information. The raw inputs of
different modalities can be concatenated as a single input and fed to the IncSFA
algorithm, without causing too much computational overhead (since IncSFA has
a linear update complexity [46]). Related work on combining sensory modalities
using SFA methods have shown to achieve good results [83].
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8. Conclusion

We proposed an online-learning algorithm that enables a humanoid robotic
agent, such as an iCub, to incrementally acquire skills in order of increasing learn-
ing difficulty, from its onboard high-dimensional camera inputs and low-level kine-
matic joint maps, driven purely by its intrinsic motivation. The method combines
our recently introduced active modular Slow Feature learning algorithm, called
Curious Dr. MISFA and the options framework. We formally defined the underly-
ing learning problem and provided experimental results conducted using an iCub
humanoid robot to topple, grasp and pick-place a cup. To our knowledge, this is
the first method that demonstrates continual curiosity-based skill acquisition from
high-dimensional video inputs in humanoid robots.
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[20] O. C. Jenkins and M. J. Matarić. A spatio-temporal extension to isomap nonlinear dimension
reduction. In Proceedings of the twenty-first international conference on Machine learning,
page 56. ACM, 2004.

[21] H. Lee, Y. Largman, P. Pham, and A.Y. Ng. Unsupervised feature learning for audio classifica-
tion using convolutional deep belief networks. In Advances in neural information processing
systems, pages 1096–1104.

[22] S. Singh, A. G. Barto, and N. Chentanez. Intrinsically motivated reinforcement learning. In
Advances in Neural Information Processing Systems (NIPS), pages 1281–1288, 2004.

[23] Y. Girdhar, D. Whitney, and G. Dudek. Curiosity Based Exploration for Learning Terrain
Models. In IEEE International Conference on Robotics and Automation (ICRA), 2014.

[24] A. Stout and A. G Barto. Competence progress intrinsic motivation. In Development and
Learning (ICDL), 2010 IEEE 9th International Conference on, pages 257–262. IEEE, 2010.

38



[25] L. Pape, C. M. Oddo, M. Controzzi, C. Cipriani, A. Förster, M. C. Carrozza, and J. Schmidhu-
ber. Learning tactile skills through curious exploration. Frontiers in neurorobotics, 6, 2012.

[26] S. Hart, S. Sen, and R. A. Grupen. Intrinsically motivated hierarchical manipulation. In Pro-
ceedings of the 2008 IEEE Conference on Robots and Automation (ICRA), pages 3814–3819,
2008.

[27] G. Konidaris, S. Kuindersma, R. Grupen, and A. G. Barto. Autonomous skill acquisition on a
mobile manipulator. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, pages 1468–1473, 2011.

[28] L. Gisslén, M. Luciw, V. Graziano, and J. Schmidhuber. Sequential constant size compressors
for reinforcement learning. In Artificial General Intelligence, pages 31–40. Springer, 2011.

[29] M. B. Ring. Continual Learning in Reinforcement Environments. PhD thesis, University of
Texas at Austin, 1994.

[30] J. Schmidhuber. Developmental robotics, optimal artificial curiosity, creativity, music, and the
fine arts. Connection Science, 18(2):173–187, 2006.

[31] J. Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

[32] J. Schmidhuber. Curious model-building control systems. In Proceedings of the International
Joint Conference on Neural Networks, Singapore, volume 2, pages 1458–1463. IEEE press,
1991.

[33] J. Storck, S. Hochreiter, and J. Schmidhuber. Reinforcement driven information acquisition in
non-deterministic environments. In Proceedings of the International Conference on Artificial
Neural Networks, Paris, volume 2, pages 159–164. EC2 & Cie, 1995.

[34] J. Schmidhuber. Artificial curiosity based on discovering novel algorithmic predictability
through coevolution. In Congress on Evolutionary Computation (CEC), pages 1612–1618.
IEEE Press, 1999.

[35] J. Schmidhuber. Developmental robotics, optimal artificial curiosity, creativity, music, and the
fine arts. Connection Science, 18(2):173–187, 2006.

[36] J. Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990-2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230 –247, 2010.

[37] S. Lange and M. Riedmiller. Deep learning of visual control policies. In European Symposium
on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN),
pages 265–270.

[38] M. Franzius, H. Sprekeler, and L. Wiskott. Slowness and sparseness lead to place, head-
direction, and spatial-view cells. PLoS Computational Biology, 3(8):e166, 2007.

[39] R. Legenstein, N. Wilbert, and L. Wiskott. Reinforcement learning on slow features of high-
dimensional input streams. PLoS Computational Biology, 6(8), 2010.

39
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