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Abstract

Consider a self-motivated artificial agent, who is exploring a complex environment.

Part of the complexity is due to the raw high-dimensional sensory input streams, which

the agent needs to make sense of. Such inputs can be compactly encoded through a

variety of means - one of these is Slow Feature Analysis (SFA). Slow features encode

spatio-temporal regularities, which are information-rich explanatory factors (i.e., latent

variables) underlying the high-dimensional input streams. In our previous work, we

have shown how slow features can be learned incrementally, while the agent explores its

world, and modularly, such that different sets of features are learned for different parts

of the environment (since a single set of regularities does not explain everything). In

what order should the agent explore the different parts of the environment? Following

Schmidhuber’s theory of Artificial Curiosity, the agent should always concentrate on

the area where it can learn the easiest to learn set of features, which it has not already

learned. We formalize this learning problem and theoretically show that, using our



model, called Curiosity-Driven Modular Incremental Slow Feature Analysis, the agent

on an average will learn slow feature representations in order of increasing learning

difficulty, under certain mild conditions. We provide experimental results to support

the theoretical analysis.

1 Introduction

Consider a playroom setting for a baby humanoid robot, as shown in Figure 1. The

robot is placed at a table with three objects. At any time, the robot holds its gaze on

one of the objects. The figure illustrates three such ”perspectives”. Each perspective

provides a stream of high-dimensional images to the robot, and each image stream will

be compressible and predictable in some way. This robot is intrinsically motivated to

learn the underlying regularities of the image streams as quickly as it can. In other

words, it wants to maximize its learning progress. How should it direct its gaze to

accomplish this? The robot receives no external supervision or external reward signal,

nor any information about the learning difficultly of each perspective. If it wants to act

optimally, it might first try to learn how difficult each perspective is to learn. This paper

presents a mathematical formulation of this problem, a model that solves it, and a proof

that shows this solution is optimal.

This work is based on the theory of Artificial Curiosity [AC; Schmidhuber, 2006b,

2010b]. An artificial agent driven by curiosity receives intrinsic rewards for its ac-

tions. Intrinsic rewards are proportional to the improvement of the agent’s internal

world model. Reinforcement learning (RL) is used to decide which actions lead to the

highest intrinsic rewards. The curious agent is motivated to go to places where it expects

to maximize learning progress [Schmidhuber, 1991, Storck et al., 1995, Schmidhuber,

1999a, 2006a, 2010a, Pape et al., 2012]. The improving world model of the robot is a

set of abstractions or latent variables. The abstraction learning method we use is Slow

Feature Analysis [SFA; Wiskott and Sejnowski, 2002, Franzius et al., 2007, Legen-

stein et al., 2010], an unsupervised learning algorithm that can extract spatio-temporal

regularities from rapidly changing raw sensory inputs. SFA is based on the Slowness

Principle [Földiák, 1991, Mitchison, 1991, Wallis and Rolls, 1997], which states that

the underlying causes of changing signals vary more slowly than the primary sensory
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Figure 1: A playroom setting for a baby humanoid robot. There are three interesting

areas for the robot to look at, but each area is not equally interesting. Perspective

three shows another robot moving a block in a complex pattern, while perspective one

shows a robot vehicle moving in a simple back and forth pattern. What sequence of

perspectives should the robot choose to maximize learning progress?

stimulus. For example, individual retinal receptor responses or gray-scale pixel values

of video will change much faster compared to the latent variables, such as the position

of a moving object. SFA has achieved success in many problems, such as extraction

of driving forces of a dynamical system [Wiskott, 2003], nonlinear blind source sep-

aration [Sprekeler et al., 2014], preprocessing for reinforcement learning [Legenstein

et al., 2010, Kompella et al., 2011b], learning of place-cells, head-direction cells, grid-

cells, and spatial view cells from high-dimensional visual input [Franzius et al., 2007],

dynamic scene classification [Theriault et al., 2013], recognition of postures of a biped

humanoid robot [Höfer et al., 2012], and learning human action sequences [Zhang and

Tao, 2012, Sun et al., 2014].

In our previous work, we derived a low complexity, online implementation of SFA,

called Incremental Slow Feature Analysis [IncSFA; Kompella et al., 2011a, 2012a].

IncSFA extracts slow features without estimating costly covariance matrices. Standard

SFA techniques are not readily applicable to vision-based curiosity-driven online learn-

ing agents, as they estimate covariance matrices from the data via batch processing. But

IncSFA is suitable to use in online learning applications with high-dimensional inputs.

IncSFA, like most online learning approaches, gradually forgets previously learned
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representations whenever the statistics of the input change, e.g.,when the robot shifts

its gaze to another perspective (see Figure 1). To prevent forgetting, we developed a

modular version of IncSFA, called Curiosity-Driven Modular Incremental Slow Feature

Analysis (Curious Dr. MISFA). Curious Dr. MISFA retains previously learned abstrac-

tions in the form of expert modules [Ring, 1994], and actively learns multiple expert

modules in order of increasing learning difficulty. Each abstraction learned can be used

by a reinforcement learner to map the potentially high-dimensional visual inputs to use-

ful action sequences [Legenstein et al., 2010, Kompella et al., 2011b, 2014]. The next

section discusses the novel contributions of this paper.

1.1 Contributions

Our previous work includes an initial implementation of Curious Dr. MISFA [Kompella

et al., 2012b], a discussion on its neurophysiological correlates [Luciw et al., 2013] and

its application to high-dimensional image streams captured from the camera-eyes of

a humanoid iCub robot [Luciw et al., 2013, Kompella et al., 2014, 2015]. The novel

contributions of this paper are as follows.

• An improved Curious Dr. MISFA algorithm with a new intrinsic reward function

that is crucial to ensure its stability.

• A theoretical formulation of the learning problem associated with Curious Dr.

MISFA.

• A formal analysis of the average dynamics of Curious Dr. MISFA, where we

show that the abstractions are learned in the order of increasing learning difficulty,

under certain mild conditions. Although not explicitly shown in this paper, this

analysis is not limited to IncSFA and can be extended to an other abstraction

learning algorithm.

• An experimental validation conducted on test signals to support the analysis.

• Design extensions of the method to make it applicable to maze environments.

The rest of paper is organized as follows. Section 2 presents an overview of the

Curious Dr. MISFA algorithm along with a theoretical formulation of the learning prob-

lem. Section 3 discusses the crucial parts of the algorithm in detail. A formal analysis
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of the dynamics of the algorithm is presented in Section 4. Section 5 summarizes the

algorithm with a pseudocode and a discussion on tuning hyper-parameters. Section 6

presents experimental results. Design extensions to make the algorithm applicable to

specific maze domains are discussed in Section 7. Section 8 concludes the paper.

2 Overview

In this section, we present an overview of the Curious Dr. MISFA. See Figure 2 for a

schematic diagram of the algorithm.

Environment. The input to the algorithm is a set of pre-defined observation streams

X = {x1, ...,xn : xi(t) =
(
x1
i (t), x

2
i (t), ..., x

I
i (t)
)
∈ RI∈N}, which may or may not be

unique. Each stream xi could potentially represent a video sequence of images observed

for a particular head rotation angle (perspective) of a camera-equipped humanoid robot.

It can also represent a sequence of images observed while the agent is executing a

particular task. In addition to the streams, the algorithm may also receive a finite, low-

dimensional, digital signal1 u,u(t) ∈ U,U ⊂ RP∈N, for e.g., a sequence of discretized

joint-angle observations (proprioception) of the humanoid robot. At any time t, the

agent receives an observation x(t) ∈ {x1(t), ...,xn(t)} from only one of the streams.

The agent explores the streams with two actions: {stay, switch}. When the agent takes

the stay action, the current stream xi remains the same and it receives a set of τ observa-

tions from that stream. We denote the τ observation set as x(t; τ) = [xi(t), ...,xi(t+τ)].

When it takes the action switch, the agent selects a stream xj 6=i randomly from one of

the other n − 1 streams and it receives τ number of observations from the new stream

x(t′; τ) = [xj(t
′), ...,xj(t

′ + τ)] (see Section 3.2 for details on why this is crucial).

Next, we discuss the goal of the algorithm.

Goal. The desired goal of the algorithm is to learn a sequence of abstractions

Φ = {φ1, ..., φm; m ≤ n}, where each abstraction is unique and encodes some un-

derlying regularity within one or more observation streams. The order of the sequence

is such that, the first abstraction learned corresponds to the easiest encodable obser-

vation stream. Since the learning difficulty of the observation streams is not known a

priori, the learning process involves estimating not just the abstractions, but also the

1A digital signal is a discrete-time signal for which both time and amplitude have discrete values.
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Figure 2: Schematic Diagrams of Curious Dr. MISFA. (a) The overall architecture includes a

Reinforcement Learner (RL), a gating system and an adaptive IncSFA-ROC module. The input

to the algorithm is a set of observation streams, where each stream could potentially represent

a video sequence of images observed for a particular head rotation angle of a humanoid robot.

An additional input to the algorithm is a user-defined time-varying signal, for e.g., the joint-

angle observations of a humanoid robot. The RL decides which stream to select using actions

stay or switch, to make a set of τ observations. (b) Inner details of the gating system and the

IncSFA-ROC module. Gating system uses the learned modules to detect if the observed inputs

are novel. IncSFA updates slow features from the novel inputs and the ROC estimates the slow

feature outputs with respect to the user-signal observations. The errors generated through the

module are used to update the RL. When the IncSFA-ROC module is learned, it is saved in the

gating system and a new module is created. See text for more details.
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order in which the observation streams need to be encoded.

Architecture. The overall architecture of the Curious Dr. MISFA agent that achieves

this goal includes the following (see Figure 2(a)):

1. A gating system that detects if the input observations are novel.

2. An adaptive Incremental Slow Feature Analysis [IncSFA; Kompella et al., 2011a,

2012a] coupled with a Robust Online Clustering [ROC; Guedalia et al., 1999,

Zhang et al., 2005] module (denoted by Θ) that updates an IncSFA-ROC abstrac-

tion based on the novel input observations.

3. A Reinforcement Learner (RL) that finds the stream that is the easiest to learn

based on the learning progress made by the adaptive IncSFA-ROC module.

We discuss next how the control flows within this architecture.

Control Flow. The algorithm begins with no previously learned modules. The agent

receives τ observations each from the current stream and the user-signal: (x(t; τ),u(t; τ)),

where u(t; τ) = [u(t), ...,u(t+ τ)]. Since there are no previously learned modules, the

tuple of τ -observations set (x(t; τ),u(t; τ)) is novel. The novel tuple is an input to

the adaptive IncSFA-ROC module (Figure 2(b)). IncSFA updates a slow feature matrix

(φ̂sfa; a real-valued matrix of size I × J) based on the input x(t; τ). The slow feature

matrix φ̂sfa : x(t) 7→ y(t) maps the observations x(t; τ) to a lower-dimensional output

y(t; τ) = [y(t), ...,y(t+τ)],y(t) ∈ RJ∈N, J � I , such that, y(t; τ) = φ̂sfa·x(t; τ). The

ROC algorithm updates discrete cluster centers φ̂roc improving its estimates of the slow

feature output y(t; τ) with respect to the user-signal observations u(t; τ), such that,

φ̂roc : (y(t),u(t)) 7→ ŷ(t). The user-signal observations u(t; τ) (defined earlier) act

as meta-class variables for clustering the data. ŷ(t; τ) are discrete estimates of y(t; τ)

(see Section 3.1 for more details). The adaptive abstraction φ̂ is a tuple of real-valued

matrices φ̂ = (φ̂sfa, φ̂roc). The overall IncSFA-ROC update step can be summarized as:

φ̂← Θ
(

(x(t; τ),u(t; τ)), φ̂
)
. (1)

After each update the learning error of the IncSFA-ROC module is computed as a tuple

ξ(t) =
(
ξsfa(t), ξroc(t)

)
. ξsfa(t) is the change of slow feature matrix over time

(
ξsfa(t)

= ‖φ̂sfa(t)− φ̂sfa(t+ 1)‖
)

, where ‖.‖ denotes the Frobenius matrix norm. ξroc(t) is the
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estimation error of the ROC. An expression for the ROC estimation error is discussed

later in Section 3.1. The IncSFA-ROC error ξ(t) is then used to update the RL.

The RL is used to accomplish two tasks (a) find the easiest novel stream to encode,

and (b) stick to that stream long enough to learn an expert IncSFA-ROC module. To

this end, it learns a stream selection policy that outputs an action (stay or switch) for

each stream. The state and action space of the RL are defined as S = {s1, ..., sn},

where si denotes the stream identification number, and A = {stay, switch}. RL learns

the deterministic stream selection policy π : S → A by updating a reward function

R : S×A×S → R based on the IncSFA-ROC error. The agent then uses a decaying ε-

greedy strategy [Sutton and Barto, 1998] to follow the learned policy with a probability

of 1 − ε, and with ε probability it follows a policy that outputs actions stay and switch

uniform randomly for each state. Let this stochastic policy be denoted by πb : S ×

A → [0, 1], such that, πb = ε-greedy(π). The agent takes a new action based on

πb and the process repeats. When ξroc(t) < δ(≈ 0), the adaptive module is saved

φ = (φsfa, φroc)← (φ̂sfa, φ̂roc) and added to the abstraction library:

Φ← Φ ∪ φ. (2)

Once the abstraction is saved, it is never updated again (frozen) and a new adaptive

module φ̂ is created. The gating system uses the stored frozen IncSFA-ROC modules

to generate a gating signal that filters known or similar input observations. To this

end, it first computes the ROC estimation errors of all the frozen modules for the new

input (x(t; τ),u(t; τ)) and filters the input if any of the estimation errors is less than

δ. Otherwise, the input is forwarded to the adaptive IncSFA-ROC module. Therefore,

ROC plays a crucial role in the algorithm as it contributes in deciding (a) when to stop

updating the adaptive module by checking if its estimation error falls below δ, and (b)

if the new inputs are novel by checking the errors of the frozen modules. Additionally,

ROC also biases the algorithm to learn slow features whose outputs are predictable with

respect to the user-signal. For example, if the user-signal observations are discretized

joint angles of a humanoid robot, then the slow features learned by IncSFA-ROC would

encode environment variations that are correlated to the joint-angle transitions (e.g.,

when the robot grasps a cup). Other independent environment variations like people

moving in the background, illumination, etc., are not considered because the estimation
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error would never go below the threshold δ. This slow feature learning bias of the ROC

is especially useful for humanoid applications. In applications where such a signal is

unavailable or difficult to provide, the algorithm assumes u(t) to indicate a time-index

of a fixed arbitrary period, for e.g., U = [0, T ] and u(t) = t%(T + 1), where % denotes

the modulo operator. Next, we formalize the problem of learning modular abstractions

in the order of increasing learning difficulty.

Learning Problem Formalized. The underlying learning problem associated with

Curious Dr. MISFA can be formulated as an optimization problem. Simply put, the

problem states that for a given set of time-varying observation streams, an abstraction

corresponding to the most easily learnable yet unknown observation stream is learned

first. The optimization problem is not specific to learning modular slow features, there-

fore, Θ denotes here any general abstraction-estimator that converges to a fixed-point.

To keep it simple, we skip the user-signal u. Later in Section 4, we will show that

the Curious Dr. MISFA algorithm converges to the optimal solution of the proposed

problem. We introduce here some additional notation required for the formulation:

Encoded Streams: Let Xφi ⊆ X denote the set of observation streams such that

the average abstraction-estimation error 〈‖Θ(xj(t), φi) − φi‖〉τt ≤ δ, ∀xj ∈ Xφi . Xφi

represents the streams encoded by the abstraction φi. 〈.〉t indicates averaging over time,

〈.〉τt indicates windowed-average over time with a fixed window size τ and ∀ indicates

for all.

Curiosity Function: Let Ω : X → [0, 1) denote a function indicating the speed

of learning an abstraction by the abstraction-estimator Θ. Easily learnable inputs have

lower values of Ω. Ω induces a total ordering among the observation streams making

them comparable in terms of the learning difficulty (see Section 4 for a proof on the

existence of such a function).

The optimization problem is formulated as follows: Given the input X , find a set of

m abstractions [φ1, ..., φm≤n], such that, for each i ∈ {1, ...,m}

Ω
(
xi ∈ Xφi

)
is minimal,
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under the constraints,

〈yji 〉t = 0, 〈
(
yji
)2〉t = 1, ∀j ∈ {1, ..., J} (std. normal stats) (3) ∀φi ∈ Φ,∃xj ∈ X,

and ∀φk<i ∈ Φ

 :
〈‖Θ(xj(t), φi)− φi‖〉τt ≤ δ (at least one stream encoded)

〈‖Θ(xj(t), φk)− φk‖〉τt > δ (unique abstraction learned)
(4)

The goal here is to find abstractions that encode the top easiest to learn observation

streams. Constraint (3) requires that the abstraction-output components have zero mean

and unit variance. This constraint enables the abstractions to be non-zero and avoids

learning features for constant observation streams. Constraint (4) requires that a unique

abstraction be learned that encodes at least one of the streams, avoiding redundancy.

This constraint also induces an order in the abstractions learned, such that, Ω(xi ∈

Xφ1) < Ω(xi ∈ Xφ2) < ... < Ω(xi ∈ Xφm). This is explained as follows. When

learning φ1, only the first part of Constraint (4) applies and therefore the objective is

minimal when φ1 encodes the observation stream (∈ X) with the lowest Ω value. When

learning φ2, the second part of Constraint (4) ensures that φ2 does not encode any xi ∈

Xφ1 . Therefore, φ2 encodes the observation stream (∈ {xi ∈ X|xi /∈ Xφ1}) with the

lowest Ω value. The same reasoning follows for the rest resulting in a set of abstractions

ordered according to the increasing Ω-values of the corresponding observation streams

that they encode.

Finding the optimal solution to the above problem is straightforward when the cu-

riosity function values for each observation stream are known a priori. However, this is

generally not the case. One possible approach to address this is to find (a) an analytical

expression of Ω for the particular abstraction-estimator Θ and (b) an input sampling

technique that can estimate the Ω values for each observation stream. However, this

approach is dependent on the Θ used. A more general approach is to use the learning

progress of Θ, while exploring using reinforcement learning (RL) to estimate the Ω

values in the form of curiosity rewards for each observation stream. This approach is

independent of the abstraction-estimator used. However, it requires learning an obser-

vation stream selection policy π, and at the same time the abstraction from the incoming

observations based on the (imperfect) policy π. Curious Dr. MISFA employs the later

approach to address this problem. Next, we discuss details of some crucial design as-

pects of the Curious Dr. MISFA algorithm.
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3 Method Description

Two crucial learning blocks of the Curious Dr. MISFA algorithm are the unsupervised

abstraction learning block and the reinforcement policy learning block. Curious Dr.

MISFA updates both these online learning methods simultaneously such that the overall

system converges to the optimal solution discussed in the previous section. We discuss

here in detail how these learning updates are carried out.

3.1 Learning Abstractions using IncSFA-ROC

Curious Dr. MISFA’s abstraction-estimator is the IncSFA-ROC algorithm. IncSFA is

used to learn real-valued slow features of the input observations whereas the ROC is

used to learn a discrete model mapping the slow feature outputs with respect to the

user-signal. We discuss here more details on the individual algorithms.

IncSFA: IncSFA is an unsupervised learning technique that extracts features from

an input stream with the objective of maintaining an informative but slowly-changing

feature response over time. IncSFA is an online implementation of the original batch

Slow Feature Analysis (SFA; Wiskott and Sejnowski [2002]) whose optimization prob-

lem is as follows: Given an I-dimensional input stream x(t) = (x1(t), ..., xI(t)), find a

set of J instantaneous real-valued functions g = [g1, ..., gJ ], which together generate a

J-dimensional output stream y(t) = (y1(t), ..., yJ(t)) with yi(t) = gi(x(t)), such that

for each i ∈ {1, ..., J}

∆i = ∆(yi) = 〈(ẏi)2〉t is minimal (5)

under the constraints

〈yi〉t = 0 (zero mean), (6)

〈(yi)2〉t = 1 (unit variance), (7)

∀j < i : 〈yiyj〉t = 0 (decorrelation and order), (8)

where ẏ denotes the time derivative of y. The goal is to find instantaneous functions gj

generating different output streams that are as slowly varying as possible. The decor-

relation constraint (8) ensures that different functions gj do not code for the same fea-

tures. The other constraints (6) and (7) avoid trivial constant output solutions. IncSFA,
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like SFA, uses a simpler eigenvector based approach to find a linear-approximate solu-

tion to the problem (φsfa = linear-approximation (g)). The input is first incrementally

whitened using a Candid Covariance-Free Incremental PCA (CCIPCA; [Weng et al.,

2003, Zhang and Weng, 2001]), such that, the whitened input has unit covariance. Then,

the eigenvectors (minor components) with the smallest eigenvalues of the derivative of

the whitened input are extracted using Minor Component Analysis (MCA; [Oja, 1992,

Peng and Yi, 2006, Peng et al., 2007]). Slow feature vectors are an inner product of the

CCIPCA and MCA weight vectors. CCIPCA requires a dynamic learning rate schedul-

ing that is automatically set, whereas MCA requires a constant learning rate (ηmca) that

needs to be hand-set for each experiment. In this paper, we refer to ηmca as the learning

rate of the IncSFA ηsfa.

To handle quadratic non-linearities, the input x(t) = [x1(t), ..., xI(t)] is expanded

over a quadratic space [(x1(t))2, (x2(t))2, ..., (x1(t)x2(t)), ..., x1(t), ..., xI(t)] using a

quadratic kernel and the linear IncSFA is applied on the expanded input [Kompella

et al., 2011a]. For extracting higher non-linearities, quadratic IncSFAs can be applied

in a deep converging hierarchy [Luciw et al., 2012], or a linear IncSFA can be combined

with a non-linear auto-associative neural network [Kompella et al., 2011b].

IncSFA learns instantaneous features from sequential data. Relevance cannot be

uncovered without taking time into account, but once it is known, each input frame

in most cases can be encoded on its own. Due to this, IncSFA differs from both (1)

many well-known unsupervised feature extractors [Abut, 1990, Jolliffe, 1986, Comon,

1994, Lee and Seung, 1999, Kohonen, 2001, Hinton, 2002] that ignore dynamics, and

(2) other UL systems that both learn and apply features to sequences [Schmidhuber,

1992a,c,b, Lindstädt, 1993, Klapper-Rybicka et al., 2001, Jenkins and Matarić, 2004,

Lee et al., Gisslén et al., 2011], thereby assuming that the state of the system itself can

depend on past information.

The compact relevant encodings uncovered by IncSFA reduce the search space for

downstream goal-directed learning procedures [Schmidhuber, 1999b, Barlow, 2001],

especially reinforcement learning. As an example, consider a robot sensing with an

onboard camera. Reinforcement learning algorithms applied directly to pixels can be

quite inefficient due to the size of the search space. Slow features can encode each

image into a small set of useful state variables, and the robot can use these few state
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variables to quickly develop useful control policies. The state variables from SFA are

approximations of low-order eigenvectors of the graph Laplacian [Sprekeler, 2011], i.e.,

proto-value functions [Mahadevan and Maggioni, 2007]. This is why they are typically

more useful as features in reinforcement learning in comparison with other types of

features, such as principal components. More details on IncSFA and its applications

to high-dimensional image inputs can be found in our previous work [Kompella et al.,

2012a, 2011b]. Next, we discuss briefly how the ROC is coupled to the IncSFA.

ROC: The ROC is similar to an incremental K-means algorithm — a set of cluster

centers is maintained, and with each new input, the most similar cluster center (the

winner) is adapted to become more like the input. Unlike k-means, with each input it

follows the adaptation step by either merging the two most similar cluster centers or by

creating a new cluster center at the latest input. In this way, ROC can quickly adjust to

non-stationary input distributions by directly adding a new cluster for the newest input

sample, which may mark the beginning of a new input process. ROC has two main

hyper parameters: maximum number of clusters centers N roc and amnesic rate ηroc.

N roc limits the algorithm to learn at most N roc clusters and ηroc is a memory parameter

that biases the algorithm to adapt clusters based on the recent history of observations.

In Curious Dr. MISFA, the ROC algorithm is coupled to the IncSFA algorithm to

learn discrete cluster centers φ̂roc estimating the slow feature output y(t; τ) with respect

to the user-signal observations u(t; τ), such that, φ̂roc : (u(t),y(t)) 7→ ŷ(t). ŷ(t; τ)

are discrete estimates of y(t; τ). Learning φ̂roc can be computationally intensive. We

simplify the learning process by using a lookup table approach since U is a discrete

bounded set (say U has p elements = {u1, ...,up}). For each ui ∈ U , we associate an

ROC instantiation (node). Therefore, φ̂roc = {φ̂roc
u1
, ..., φ̂roc

up
}. For each tuple (u(t),y(t)),

φ̂roc
ui=u(t) is updated with the slow feature output y(t) and the estimation error is com-

puted and stored ξroc
ui=u(t) = ‖ŷ(t)−y(t)‖. Therefore, at any time t, only one ROC node

is updated. The total ROC estimation error (Figure 3) is the sum of stored errors of all

the ROC nodes:

ξroc(t) =

p∑
i=1

ξroc
ui

(t). (9)

To illustrate the working of IncSFA-ROC algorithm, consider an example from our

previous work [Luciw et al., 2013]. A robot is placed next to a table with a plastic cup in
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Figure 3: An example estimation error over time of the ROC-algorithm. (a) The esti-

mation error of 20 instances of ROC nodes to estimate the IncSFA output to 20 values.

(b) The total estimation-error ξroc(t) is the sum of stored errors of all the nodes.

its reach. It explores by moving its right hand through a random-walk along its shoulder

joint. As a consequence of its exploration it topples the cup (Figures 4(b)-(c)). After a

few time steps the cup is put back in its standing position and the toppling event repeats.

IncSFA-ROC receives a continuous sequence of gray-scaled image observations (x(t);

downscaled to 100x80 pixels) and the user-signal observations which are the shoulder-

joint angles discretized into p=20 bins (u(t) ∈ U = {u1, ...,u20}). For each ui, there

is an associated instance of the ROC algorithm, resulting to p=20 instances of the ROC

algorithm. A developing slow feature output here is a step function (Figure 4(d)), e.g.,

when the object is not toppled the feature output equals ≈ −1.5, and when the object is

toppled the feature output equals ≈ 0.5, invariant to the robot’s arm position and other

variations in the image sequence. Upon convergence of the IncSFA first and the ROC

second, each joint angle will be mapped to two cluster centers (Figure 4(e)), (except for

the joint angles u15−u20, where the robot’s hand is to the left of the object’s position and

the object cannot be in a not-toppled position) providing information about invariants

captured with IncSFA. The slow feature step function output along with the learned

model (in the form of cluster center estimates) can easily drive a subsequent planning

algorithm to learn a policy that efficiently topples the cup. Next we discuss, how the RL

in Curious Dr. MISFA uses the updating IncSFA-ROC abstraction algorithm to guide

learning the stream selection policy.
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Figure 4: IncSFA-ROC example experiment. (a) A robot is placed next to a table with

a plastic cup in its reach. It explores by moving its right hand through a random-walk

along its shoulder joint. As a consequence of its exploration it topples the cup. After a

few time steps the cup is put back in its standing position and the toppling event repeats.

IncSFA-ROC receives a continuous sequence of gray-scaled image observations (x(t);

downscaled to 100x80 pixels) and the shoulder-joint angles (u(t) ∈ U = {u1, ...,u20}).

(b) A sample input image when the cup is not toppled. (c) A sample input image when

the cup is toppled. After a few 100 time steps of random walk, IncSFA-ROC converges.

(d) 100 time steps of IncSFA output plotted against time after convergence. The output

is a step function indicating whether the cup is toppled or not, invariant to the position

of its hand visible in the image. (e) ROC learns cluster centers estimating different slow

feature output values (blue dots) for each joint angle ui ∈ U . Each joint-angle has two

estimates (red triangles) denoting two states of the cup (toppled or not).

3.2 Learning Stream Selection Policy Using RL

Section 2 presented an overview of the basic functioning of the RL agent. Here, we

discuss more details of the RL algorithm and how it learns the stream selection policy.
15



One crucial design aspect of the RL used is the novel action space = {stay, switch},

where the action stay makes the agent’s state to be the same as the previous state, while

switch randomly shifts the agent’s state to one of the other neighboring states with equal

probability. The random nature of the switching forces the IncSFA-ROC algorithm

to not encode any regularity while switching between the states. This is crucial to

ensure the stability of the method by avoiding combinatorial possibilities of generating

a coherent stream of data through deterministically switching between a few states at

different times.

The goal of the RL agent is to learn the deterministic stream selection policy π that

(a) finds the easiest novel stream to encode, and (b) sticks to that stream long enough to

learn an expert IncSFA-ROC module. To this end, the RL optimizes the following cost

function:

J = min
π

(ξ̇sfa(t), ξroc(t)) (10)

Eq. (10) is a multi-objective reinforcement learning problem (MORL; [Gábor et al.,

1998, Vamplew et al., 2011]). Minimization of the first objective would result in a pol-

icy that will shift the agent to states where the error decreases sharply (ξ̇sfa(t) < 0),

indicating faster learning progress of the IncSFA. While, minimization of the second

objective would result in a policy that will improve the developing IncSFA-ROC ab-

straction to satisfy the Constraint (4). A cost function with only one of these terms

may not be sufficient to solve the problem since using only the first objective, the agent

would never be motivated to learn an expert module. While, using only the second ob-

jective, the agent would be motivated to learn constant streams or streams that change

slowly (near constant streams or difficult-to-learn streams).

Optimizing the two objectives simultaneously is not straightforward since they are

correlated and partially conflicting: optimizing the first objective aids in optimizing the

second, however, optimizing the second objective would result in an increasing error-

gradient ξ̇sfa(t) (from a negative value to 0), which conflicts with the first. Therefore,

there does not exist a single policy that simultaneously optimizes each objective. We in-

stead use an approach to find a dynamically changing pareto-optimal policy [Vamplew

et al., 2011] by prioritizing each objective based on the error ξroc(t). To this end, we

scalarize the cost in terms of a scalar reward r that evaluates the current τ -samples input
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(x(t; τ),u(t; τ)) received for the tuple (current state s, current action a, future state s′)

as follows:

rss
′

a =

(
−
∫
τ

ξ̇sfadt+ βZδ,σ(〈ξroc〉τt )
)

(11)

where Z represents a Gaussian function Zδ,σ(x) = e
−

(x− δ)2

2σ2 . δ, σ and β are scalar

constants. We refer to −
∫
τ
ξ̇sfadt as the curiosity-reward term and Zδ,σ(〈ξroc〉τt ) as the

expert-reward term. A fast reliable approximation of these terms are computed from τ

observations as follows:

〈ξroc〉τt =
1

τ

t+τ−1∑
t

ξroc(t), (12)

∫
τ

ξ̇sfadt =
t+τ−2∑
t

(
‖φ̂sfa(t+ 2)− φ̂sfa(t+ 1)‖ − ‖φ̂sfa(t+ 1)− φ̂sfa(t)‖

)
(13)

An intuition behind using the Gaussian function to represent the expert-reward term

is as follows: (a) to compensate for the exponential decrease of the curiosity-reward

term (discussed in detail in Section 4) and (b) the expert-reward needs to increase

monotonously as the error gets closer to the threshold δ. δ is usually selected to be

a small value close to zero. σ determines the contribution of the expert-rewards in the

total reward. We discuss later in Section 5 how to tune these parameters.

A model R : S ×A× S → R of these instantaneous rewards is updated as:

R̃ss′

a ← α rss
′

a + (1− α)R̃ss′

a ; R← R̃/‖R̃‖, (14)

where α is a constant smoothing coefficient and ‖R̃‖ is a scalar.

The transition model P : S×A×S → [0, 1] of the environment dynamics resembles

that of a Complete-Graph, where each state si ∈ S is represented by a node in a fully-

connected undirected-graph. Figure 5 illustrates the model.

P ij
stay =

1, if i = j

0, if i 6= j
, P ij

switch =

0, if i = j

1
n−1

, if i 6= j
, ∀i, j ∈ [1, ..., n]. (15)

The agent has the capability to shift between any of observation streams, similar to

switching between channels of a television.

After every τ sample observations, the reward function estimate R along with the

complete-graph transition model P are used to learn a new approximate value function
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Figure 5: The state-action transition model of the agent’s environment resembles that

of a complete graph Markov chain.

Q and the stream selection policy π using Model-based Least Squares Policy Iteration

(Model LSPI; Lagoudakis and Parr [2003]) RL algorithm. Next, we discuss how the

algorithm with the updating abstraction and stream selection policy converges to the

optimal solution discussed in Section 2.

4 Dynamical Analysis

In this section, we present a formal analysis of the dynamics of the Curious Dr. MISFA

algorithm. The full dynamics of Curious Dr. MISFA is fairly complicated due to the

use of the heuristic ε-greedy strategy that balances exploration and exploitation. We

instead focus here only on two cases: (a) pure exploration (ε = 1) and (b) pure ex-

ploitation (ε = 0). We use a slowly decaying ε to smoothly transition from exploration

to exploitation. Next, we show in Theorem 1 that for a given arbitrary deterministic

abstraction estimator that ensures convergence to a fixed point, there exists a curiosity

function Ω that indicates the speed of learning an abstraction.
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Theorem 1. Given an abstraction-estimator Θ that ensures convergence to a fixed-

point, there exists a curiosity function Ω : X → [0, 1) corresponding to Θ that induces

a total ordering on X .

Proof. Since Θ ensures convergence on a temporally coherent stationary input stream

x ∈ X , there exists a minimal time Tx ∈ R+ s.t. for

t > Tx, |φ̂t − φ∗| < δ, (16)

where φ∗ represents a fixed-point (∈ RI×J ) and δ is a small non-negative scalar con-

stant. Tx is called the convergence time for the stream x. For non-stationary streams in

X , there is no fixed-point and therefore the above condition does not hold (Tx = ∞).

Let T denote the set of convergence times of all the streams x ∈ X . Therefore, there

exists a function T : X → T , s.t. T (x) denotes the convergence time of the input x. It

is straightforward to show that since T is a totally-ordered set, T induces a total order-

ing in X . One can easily find an order-preserving transfer function f : T → [0, 1), for

example 1− e−T , such that the composite function Ω = f ◦ T induces a total ordering

in X .

Theorem 1 ensures that the objective of the optimization problem discussed in Sec-

tion 2 is well defined. Curious Dr. MISFA estimates the unknown Ω through curiosity

rewards that are proportional to the learning progress of IncSFA. Next, we define the

curiosity function of IncSFA and briefly discuss its dynamics.

4.1 Curiosity function of IncSFA

Here, we discuss briefly the dynamics of IncSFA as a function of Ω for a given tem-

porally coherent observation stream x(t) ∈ RI . To keep it simple, we assume that the

CCIPCA (see Section 3.1) has converged, that is, the output of CCIPCA zi(t) ∈ RI has

unit variance (whitened output). We consider here only the first output component of

IncSFA, but this analysis can trivially be extended for higher output components using

sequential-addition technique [Kompella et al., 2012a].

Since x(t) is a temporally coherent stream, the correlation matrix E[żiż
T
i ] is a

symmetric nonnegative definite matrix. It can be factorized into QDQ−1, where Q
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is the eigenvector matrix (columns representing unit-eigenvectors vi) and D is a diag-

onal matrix with corresponding eigenvalues (λ1 < λ2 < ... < λI). The eigenvectors

{vi|i = 1, 2, ..., I} form an orthonormal basis spanning RI . The IncSFA weight vector

φ̂sfa(t) can then be represented as

φ̂sfa(t) =
I∑
i=1

ai(t)vi, (17)

where ai(t) are non-negative constant coefficients. In our previous work [Luciw et al.,

2013] we have shown that

ai(t) = CiaI(t)ω
t
i , aI(t) =

1√
1 +

∑I−1
j=1 C

2
jω

2t
j

, ωi =

(
1− ηsfa(λi − λI)

1− ηsfa − ηsfaλI

)
, (18)

lim
t→∞

ai 6=I = 0, lim
t→∞

aI = 1, (19)

where Ci = ai(0)
aI(0)

and 0 < ω1 < ... < ωI−1 < 1. For the expected behavior over several

random initializations, E[ai(0)]’s can be assumed to be the same, therefore E[Ci] =

E[ai]/E[aI ] = 1,∀i. It follows that if at time t = Tx, aI−1 ≤ δ/I , then ai<I−1 < δ/I ,

(1 − aI) < δ/I and |φ̂sfa(t) − vI | < δ where δ is a small non-negative scalar constant.

Therefore, on an average over random initializations, streams with higher ωI−1 will have

higher convergence time. The curiosity function of IncSFA is defined as follows [Luciw

et al., 2013]:

Definition 1. The curiosity function of the IncSFA algorithm to extract the slowest fea-

ture from an observation stream xi ∈ X is defined as

Ω(xi) = ωI−1 =

[
1− ηsfa(λI−1 − λI)

1− ηsfa − ηsfaλI

]
, (20)

where λI 6= λI−1 denote the smallest two eigenvalues of E[żiż
T
i ], and zi(t) ∈ RI is the

whitened output of xi(t).

Streams that have higher Ω values (close to 1) are more difficult to encode by

IncSFA. From the above definition, it is also clear that streams with smaller λI (for

example, streams that change slowly in time) or with very close λI and λI − 1 (for

example, white noise) are difficult (or impossible) to encode by the IncSFA.

The curiosity function values of the observation streams are not known to the Curi-

ous Dr. MISFA agent. It estimates the values through curiosity rewards proportional to
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the learning progress of IncSFA:

ξsfa(t) = ‖d(φ̂sfa(t))/dt‖ =

√√√√ I∑
i=1

ȧ2
i (t), rsfa(t) = −ξ̇sfa(t) (21)

where ȧi(t) can be found by differentiating ai(t) (Eq. (18)) w.r.t t and solving:

ȧi(t) =
ωti√

1 +
∑I−1

j=1 ω
2t
j

[
ln(ωi)−

∑I−1
j=1 ω

2t
j ln(ωj)

(1 +
∑I−1

j=1 ω
2t
j )

]
, (22)

=
ωti

(1 +
∑I−1

j=1 ω
2t
j )

3
2

[
ln(ωi) +

I−1∑
j=1

ω2t
j ln(ωi/ωj)

]
. (23)

The range of ω is calculated as follows. Rearranging Eq. (18) we have,

ωi =

(
1− ηsfa − ηsfaλi
1− ηsfa − ηsfaλI

)
, (24)

where λi’s also represent the slowness measure (∆ values) of the input components [Wiskott

and Sejnowski, 2002]. Slowness measure indicates how slow a normalized signal (with

unit variance) changes over time. For example, the ∆ value of normalized white noise

is 2. Signals that are encodable by IncSFA have ∆ < 2. Therefore,

ωmin =
1− 3ηsfa

1− ηsfa < ω1 < ω < Ω. (25)

If ω’s are uniformly distributed between ω1 and Ω, due to the exponential distribution

of ȧ(t) w.r.t ω, the L2 norm is close to the higher values of ω with the limit case of Ω

when b → ∞. To keep the analysis simple, we study the dynamics at the limit case

ω = Ω. Additionaly, by selecting a small learning rate ηsfa, ωmin and ωi’s become close

to Ω. Substituting ωj = ωi = Ω, ∀i, j ∈ [1, I] and b = I − 1 in Eq. (23), we get

ξsfa(t) ≈ Ωt ln(Ω)√
1 + bΩ2t

√
I, (26)

rsfa(t) = −ξ̇sfa(t) =
Ωt ln2(Ω)

(1 + bΩ2t)
5
2

(1− 2bΩ2t)
√
I. (27)

Next, we find the relationship between the curiosity rewards for streams with different

curiosity function values. The following lemma is useful for the analysis.

Lemma 1. Let g(ω, t) =
ωt ln2(ω)

(1 + bω2t)
5
2

(1− 2bω2t), 0 < ω < 1 and b > 1, then

1. g(ω, t) decreases monotonously w.r.t. ω, if
ln(2b)

2
< −t ln(ω) <

ln( 4b
5−
√

21
)

2
.
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2. sgn (g(ω, t)) = sgn

(
t+

ln(2b)

2 ln(ω)

)
.

Proof. 1. To prove the result, we show that ∂g(ω,t)
∂ω

< 0 when ln(2b)
2

< −t ln(ω) <
ln( 4b

5−
√

21
)

2
.

∂g(ω, t)

∂ω
=
tωt−1 ln2 (ω) (1− 2bω2t)

(1 + bω2t)
5
2

+
2ωt−1 ln (ω) (1− 2bω2t)

(1 + bω2t)
5
2

− 4btω3t−1 ln2 (ω)

(1 + bω2t)
5
2

− 5btω3t−1 ln2 (ω) (1− 2bω2t)

(1 + bω2t)
7
2

=
ωt−1 ln(ω)

(1 + bω2t)
7
2

[(
4b2ω4t − 10bω2t + 1

)
t ln(ω)− 4b2ω4t − 2bω2t + 2

]
.

Since ln(ω) < 0, ∂g(ω,t)
∂ω

< 0 if
[(

4b2ω4t − 10bω2t + 1
)
t ln(ω)− 4b2ω4t − 2bω2t + 2

]
>

0. Let 2bω2t = x. Substituting in the above equation, we have ∂g(ω,t)
∂ω

< 0

if,
(
x2 − 5x+ 1

)
t ln(ω)− x2 − x+ 2 > 0,

if,
(
x− 5−

√
21

2

)(
x− 5 +

√
21

2

)
t ln(ω) +

(
x+ 2

)(
1− x

)
> 0,

if,
5−
√

21

2
< x < 1,

i.e. if,
ln(2b)

2
< −t ln(ω) <

ln( 4b
5−
√

21
)

2
≈ ln(9.58b)

2
.

2. The proof is straightforward. g(ω, t) > 0 iff (1−2bω2t) > 0, that is when t > − ln(2b)
2 ln(ω)

and vice versa.

Lemma 2. Let x1 and x2 be two streams s.t. Ω1 < Ω2, b > 1 and − ln(2b)

2 ln(Ω1)
< t <

−
ln( 4b

5−
√

21
)

2 ln(Ω1)
, then rsfa

1 (t) > rsfa
2 (t).

Proof. For the cases when − ln(2b)
2 ln(Ω1)

< t < −
ln( 4b

5−
√

21
)

2 ln(Ω1)
< − ln(2b)

2 ln(Ω2)
and − ln(2b)

2 ln(Ω1)
< t <

− ln(2b)
2 ln(Ω2)

< −
ln( 4b

5−
√

21
)

2 ln(Ω1)
, from Lemma 1.2, rsfa

1 (t) > 0 > rsfa
2 (t). Next, we consider the

remaining case: − ln(2b)
2 ln(Ω2)

< t < −
ln( 4b

5−
√

21
)

2 ln(Ω1)
. Since Ω1 < Ω2, ln(2b)

2
< −t ln(Ω2) <

−t ln(Ω1) < −
ln( 4b

5−
√

21
)

2
. Therefore from Lemma 1.1, we have rsfa

1 (t) > rsfa
2 (t).

Curious Dr. MISFA uses the accumulation of the curiosity rewards over time to

take optimal actions. Lemma 3 shows that the accumulated curiosity rewards generated

through IncSFA are negative up to an initial time period.
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Lemma 3. Let x1 and x2 be two streams and τ = − ln(cb)

2 ln(Ω1)

s.t. Ω1 < Ω2, 2 < c <
4

5−
√

21
≈ 9.58, b ≥ 2

then,
∫ t

0

rsfa
1 (t)dt < 0,

∫ t

0

rsfa
2 (t)dt < 0, t ≤ τ.

Proof. From Lemma 1.2, for t < − ln(2b)
2 ln(Ω1)

, the result is straightforward. We consider

the case for t = τ > − ln(2b)
2 ln(Ω1)

. Integrating rsfa(t) over time∫ τ

0

rsfa(t)dt =
Ωt ln(Ω)

√
I

(1 + bΩ2t)
3
2

∣∣∣τ
0
, (28)

=

(
1

(1 + b)
3
2

− Ωτ

(1 + bΩ2τ )
3
2

)
(− ln(Ω)

√
I). (29)

Since τ = − ln(cb)
2 ln(Ω1)

, Ω2τ = 1
cb

. Substituting above we get

∫ τ

0

rsfa(t)dt =

(
1

(1 + b)
3
2

− 1
√
b
c

(1 + c)
3
2

)
(− ln(Ω)

√
I). (30)

Since b ≥ 2, (1 + b)
3
2/
√
b > 3.67 and c < 4

5−
√

21
, (1 + c)

3
2/c < 3.60. Therefore,

(1 + b)
3
2

√
b

>
(1 + c)

3
2

c
=⇒ 1

(1 + b)
3
2

<
1

√
b
c

(1 + c)
3
2

=⇒
∫ τ

0

rsfa(t)dt < 0. (31)

Hence the result.

Next, we find the relationship between the accumulated curiosity rewards between

two streams.

Lemma 4. Let x1 and x2 be two streams, b ≥ 2 and τ = − ln(cb)

2 ln(Ω1)

s.t. Ω1 < Ω2, 2 ≤ c < 6.75

(
ln(Ω1)

ln(Ω2)

)2

− 4.75,

then,
∫ t

τ

rsfa
1 (t)dt >

∫ t

τ

rsfa
2 (t)dt, t > τ.

Proof. Case τ < t < −
ln( 4b

5−
√

21
)

2 ln(Ω1)
: The result is straightforward from Lemma 2.

Case −
ln( 4b

5−
√

21
)

2 ln(Ω1)
< t < −

ln( 4b
5−
√

21
)

2 ln(Ω2)
: From Lemma 1.2 we have rsfa

1 (t) > 0, therefore∫ t
τ
rsfa

1 (t)dt > 0. From Lemma 3, we have
∫ t
τ
rsfa

2 (t)dt < 0. The result follows.
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Case −
ln( 4b

5−
√

21
)

2 ln(Ω2)
< t: We have

∫ t
τ
rsfa

2 (t)dt =
∫ − ln(2b)

2 ln(Ω2)

τ
rsfa

2 (t)dt+
∫ t
− ln(2b)

2 ln(Ω2)
rsfa

2 (t)dt.

Since from Lemma 1.2,
∫ − ln(2b)

2 ln(Ω2)

τ
rsfa

2 (t)dt < 0, the result holds if∫ t

τ

rsfa
1 (t)dt >

∫ t

− ln(2b)
2 ln(Ω2)

rsfa
2 (t)dt (32)

Integrating
∫ t
τ
rsfa(t)dt and solving we get∫ t

τ

rsfa(t)dt =
Ωt ln(Ω)

√
I

(1 + bΩ2t)
3
2

∣∣∣t
τ

= −Ωτ ln(Ω)
√
I

(1 + bΩ2τ )
3
2

+
Ωt ln(Ω)

√
I

(1 + bΩ2t)
3
2

. (33)

Let f(Ω, t) = −Ωt ln(Ω)
√
I

(1+bΩ2t)
3
2

. First, we show that f(Ω1, τ) > f(Ω2,− ln(2b)
2 ln(Ω2)

). Substitut-

ing for τ = − ln(cb)
2 ln(Ω2)

and solving we get,

f(Ω1, τ) > f

(
Ω2,−

ln(2b)

2 ln(Ω2)

)
(34)

if ,
− ln(Ω1)√
(b)

c
(1 + c)

3
2

>
− ln(Ω2)√

(b)

2
(3)

3
2

, (35)

if ,
(1 + c)3

c2
< 6.75

(
ln(Ω1)

ln(Ω2)

)2

, (36)

if , c+ 3 +
1 + 3c

c2
< c+ 4.75 < 6.75

(
ln(Ω1)

ln(Ω2)

)2

∵ c > 2, (37)

which is the given condition. Next, we show that f(Ω1, t) < f(Ω2, t). Differentiating

f(Ω, t) w.r.t Ω, we get

∂f(Ω, t)

∂Ω
=

Ωt−1 ((2bΩ2t − 1)t ln (Ω)− bΩ2t − 1)

(1 + bΩ2t)
5
2

√
I. (38)

sgn

(
∂f(Ω, t)

∂Ω

)
= sgn

(
(2bΩ2t − 1)t ln(Ω)− bΩ2t − 1

)
. (39)

We check the condition when f(Ω, t) increases monotonously w.r.t Ω. Substituting

−t ln(Ω) =
ln(xb)

2
and solving we get

∂f(Ω, t)

∂Ω
> 0,

if, − 0.5(
2

x
− 1) ln(xb)− 1

x
− 1 > 0, (40)

if,
1

x
e

2(1+x)
(x−2) < b. (41)

As x increases 1
x
e

2(1+x)
(x−2) decreases. Substituting for x > ln( 4b

5−
√

21
), we get 1

x
e

2(1+x)
(x−2) <

1.71 < b. Therefore at time t, f(Ω, t) increases monotonously w.r.t Ω’s that sat-

isfy − ln(Ω) >
ln( 4b

5−
√

21
)

2t
. Since t > −

ln( 4b
5−
√

21
)

2 ln(Ω2)
> −

ln( 4b
5−
√

21
)

2 ln(Ω1)
we have, f(Ω1, t) <

f(Ω2, t) =⇒ f(Ω1, τ)− f(Ω1, t) > f(Ω2, τ)− f(Ω2, t). Hence the result.
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Lemma 4 shows that after an initial time τ , the accumulated curiosity rewards cor-

responding to the easier-to-learn streams are greater than the difficult ones. The range

of values of τ is more for streams with distant curiosity function values. Next, we

show that the result of Lemma 4 follows when a similar relationship between certain

exponential decay functions is held.

Lemma 5. Let ξ̃sfa(t) = −Ωqt ln(Ωq)
√
I, q = 4

ln(cb)
. Let x1 and x2 be two streams s.t.∫ t

τ
− ˙̃
ξsfa

1 (t)dt >
∫ t
τ
− ˙̃
ξsfa

2 (t)dt, 2 ≤ c < 6.75
(

ln(Ω1)
ln(Ω2)

)2

− 4.75, , b ≥ 2, τ = − ln(cb)
2 ln(Ω1)

,

then,
∫ t

τ

rsfa
1 (t)dt >

∫ t

τ

rsfa
2 (t)dt, t > τ.

Proof. Let r̃sfa denote − ˙̃
ξsfa. We find the condition ∂r̃sfa(t)

∂Ω
< 0.

∂r̃sfa(t)

∂Ω
= q2Ωqt−1

√
I ln(Ω)

[
qt ln(Ω) + 2

]
. (42)

∂r̃sfa(t)

∂Ω
< 0, if − t ln(Ω) <

2

q
=

ln(cb)

2
. (43)

Therefore, if r̃sfa
1 (t) > r̃sfa

2 (t), then Ω1 < Ω2 for the values of c < 4
5−
√

21
. This implies

Lemma 2 holds true. Following the proof similar to Lemma (4), we get if
∫ t
τ
r̃sfa

1 (t)dt >∫ t
τ
r̃sfa

2 (t)dt then Ω1 < Ω2, which implies
∫ t
τ
rsfa

1 (t)dt >
∫ t
τ
rsfa

2 (t)dt from the result of

Lemma (4) under the given conditions.

Curious Dr. MISFA uses backward difference approximation to compute the cu-

riosity rewards from ξsfa(t). Lemma 5 gives a simpler expression to use for ξsfa(t) (Eq.

(26)) that preserves the relation between the accumulated curiosity rewards and the cu-

riosity function values. Next, we discuss how Curious Dr. MISFA uses the accumulated

curiosity rewards to find the stream with the least Ω.

4.2 Curious Dr. MISFA Dynamics

We present here the average dynamics of the Curious Dr. MISFA agent to extract the

next easiest yet unknown abstraction. The outline of the analysis is as follows. First,

we discuss the conditions that are assumed to be satisfied for the analysis. Then, we

find the optimal fixed points for the adaptive abstraction φ̂ and the observation stream

selection policy π to solve the optimization problem (Theorems 2 & 3). In Theorems 4

& 5 we show that the RL framework within Curious Dr. MISFA that is detached from Ω,
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converges to this optimal solution. The following definition is useful for the remaining

of the section.

Definition 2. At time t, let xl denote the current easiest but not yet learned observation

stream and sl denote the corresponding state. Then, the index l is given by

l = arg min
∀i: xi∈X′

Ω(xi), X
′ = X \XΦt . (44)

XΦt ⊆ X denotes the set of encoded observation streams at time t (see Section 2)

and X \ XΦt denotes the set-theoretic difference equal to {xi ∈ X|xi /∈ XΦt}. Next,

we discuss the assumed conditions for the analysis.

Assumed Conditions: Curious Dr. MISFA has several online updating compo-

nents. To guarantee optimal performance, several conditions are required to be held. We

discuss here the set of necessary conditions and also the assumptions made to simplify

the analysis. Later in the section, we discuss intuitively how the algorithm functions

when a few of these assumptions are not held.

1. Number of streams and abstraction dimensionality. n > 2, J = 1. These

assumptions imply that there are more than two observation streams and the slow-

feature matrix φ̂sfa is a column vector.

2. Orthogonal fixed points. Streams X = {x1, ...,xn} are each encodable encod-

able by IncSFA and have orthogonal fixed points. That is, if {φsfa
1 , φ

sfa
2 , ..., φ

sfa
n }

are abstractions learned by IncSFA for each observation stream, then φsfa
i ·φsfa

j = 0.

This ensures that when IncSFA is making progress learning φsfa
i then, it does not

make any learning progress towards other φsfa
j 6=i.

3. IncSFA convergence conditions. Let t′ ∈ N denote the time whenever a new

adaptive abstraction φ̂ is instantiated,

ηsfa max(λ1
1, ..., λ

n
1 ) < 0.5, 0 < ηsfa ≤ 0.5, ‖φ̂sfa(t′)‖2 = 1. (45)

4. τ condition. Condition (46) determines the range of values for τ , ∀xi ∈ X \XΦt ,

τ = − ln(cb)

2 ln(Ω(xl))
, 2 ≤ c < 6.75

(
ln(Ω(xl))

ln(Ω(xi))

)2

− 4.75. (46)
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5. Curiosity function values. Condition (47) determines how far apart the curiosity

function values should be in order to be distinguished as two distinct streams.

−ln(Ω(xi))

−ln(Ω(xl))
<

1

(1 + (n− 1)(1− γ)/γ)
, ∀xi ∈ X \XΦt . (47)

γ is a constant discount-factor (0 < γ < 1) for RL.

6. Other. The reward function (Eq. 14) R generated by the algorithm has a Frobe-

nius norm equal to one. It is assumed that R takes only non-negative values. This

assumption is trivial since, a scalar positive constant can be added to R without

having any effect on the policies learned by the Least Squares Policy Iteration

(LSPI) reinforcement learning algorithm.

Let X = {x : x(t) ∈ RI , I ∈ N} denote a set of of I-dimensional observation

streams. Therefore, X ⊂ X . Let Φ∗ denote the space of all learnable abstractions by

Θ for the input X satisfying Constraints (3)-(4) (see Section 2). Based on Ω, optimal

fixed-points for the adaptive abstraction φ̂ and the observation stream selection policy π

are defined next.

Theorem 2. At time t, the optimal fixed-point φ∗ ∈ Φ∗ of the adaptive abstraction φ̂ is

equal to the J slow features of the observation stream xl and the corresponding ROC

clusters.

Proof. The proof is straightforward for J ≥ 1, however, for the rest of the analysis J is

assumed to be 1.

Theorem 3. The optimal observation stream selection policy (π∗ : Φ∗ × S → A,A =

{0 (stay), 1 (switch)}) to learn an abstraction φi ∈ Φ∗ is given by:

π∗(φi, s) = 1− 1{sl}(s), ∀s ∈ S,

where 1{sl}(s) is the Kronecker delta function: 1{sl}(s = sl) = 1,1{sl}(s 6= sl) = 0.

Proof. The proof is straightforward and follows from Theorem 2.

Theorem 3 determines the policy that optimizes the objective discussed in Section 2.

It is such that the agent takes the action stay (= 0) in the state sl, which corresponds

to the current easiest but not yet encoded observation stream xl, and takes the action
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switch (= 1) in the rest of the states. Next, we show that the RL’s policy within Curious

Dr. MISFA algorithm converges towards π∗ based on the reward function defined in

Eq. (14). The following lemmas are useful to show the result.

Lemma 6. Let R denote the estimated reward function by the algorithm at any time

t. Let π be any arbitrary deterministic observation stream selection policy and let k0

and k1 denote sets of states where the policy returns a zero (stay) and one (switch)

respectively:

k0 = {s | π(s) = 0,∀s ∈ S}

k1 = {s | π(s) = 1,∀s ∈ S} .

Then, the action values corresponding to each (s, a) tuple for the policy π are given by:

(a) Qstay
s∈k0

=
Rstay
ss

1− γ
(48)

(b) Qswitch
s∈k1

=
1

(n− 1 + γ)

 ∑
s′∈S\s

Rswitch
ss′ + R̂switch

+ R̂stay (49)

(c) Qswitch
s∈k0

=
1

(n− 1)

 ∑
s′∈S\s

Rswitch
ss′ + R̂switch + (n− 1 + γ)R̂stay − γRstay

ss

1− γ

 (50)

(d) Qstay
s∈k1

= Rstay
ss +

γ

(n− 1 + γ)

 ∑
s′∈S\s

Rswitch
ss′ + R̂switch

+ R̂stay (51)

where, R̂switch =
γ

(n− 1− γ(|k1| − 1))

∑
s′′∈k1

∑
s′∈S\s′′

Rswitch
s′s′′ (52)

R̂stay =
γ

(1− γ) (n− 1− γ(|k1| − 1))

∑
s′′∈k0

Rstay
s′′s′′ (53)

Proof. The value of a (s, a) tuple is the expected cumulative future reward that the agent

can accumulate starting by executing the action a in the state s.

(a) Qstay
s∈k0

=
∞∑
t=0

γtRstay
ss P

stay
ss =

Rstay
ss

1− γ
(b) Qswitch

s∈k1
=
∑
s′∈k0

[
Rswitch
ss′ + γQstay

s′

]
P switch
ss′ +

∑
s′∈k1\s

[
Rswitch
ss′ + γQswitch

s′

]
P switch
ss′

Substituting P switch
ss′ = 1/(n− 1) (see Section 3.2), k0 ∪ k1 = S and the result from (a),
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we get

=
1

n− 1

 ∑
s′∈S\s

Rswitch
ss′ +

γ

1− γ
∑
s′∈k0

Rstay
s′s′ + γ

∑
s′∈k1\s

Qswitch
s′

 (54)

Taking a summation of Qswitch
s over all s ∈ k1 and solving, we get,

∑
s′′∈k1

Qswitch
s′′ =

1

n− 1

∑
s′′∈k1

∑
s′∈S\s′′

Rswitch
s′s′′ +

|k1| γ
1− γ

∑
s′∈k0

Rstay
s′s′ + γ(|k1| − 1)

∑
s′∈k1

Qswitch
s′



=

∑
s′′∈k1

∑
s′∈S\s′′ R

switch
s′s′′ + |k1|γ

1−γ
∑

s′∈k0
Rstay
s′s′

(n− 1− γ(|k1| − 1))
(55)

Substituting Eq. (55) in Eq. (54) and solving we get,

Qswitch
s∈k1

=
1

(n− 1 + γ)

 ∑
s′∈S\s

Rswitch
ss′ + R̂switch

+ R̂stay

(c) Qswitch
s∈k0

=
∑

s′∈k0\s

[
Rswitch
ss′ + γQstay

s′

]
P switch
ss′ +

∑
s′∈k1

[
Rswitch
ss′ + γQswitch

s′

]
P switch
ss′

=
1

n− 1

 ∑
s′∈S\s

Rswitch
ss′ +

γ

1− γ
∑

s′∈k0\s

Rstay
s′s′ + γ

∑
s′∈k1

Qswitch
s′

 (56)

Substituting Eq. (55) in Eq. (56) and solving we get,

Qswitch
s∈k0

=
1

(n− 1)

 ∑
s′∈S\s

Rswitch
ss′ + R̂switch + (n− 1 + γ)R̂stay − γ

1− γ
Rstay
ss


(d) Qstay

s∈k1
= Rstay

ss + γQswitch
s∈k1

= Rstay
ss +

γ

(n− 1 + γ)

 ∑
s′∈S\s

Rswitch
ss′ + R̂switch

+ R̂stay

Lemma 7. If Rstay
slsl

= max(R) and Rstay
ss <

γRstay
slsl

(n− 1)− γ(n− 2)
, ∀s ∈ S \ sl then,

arg max
π

Qπ = 1− 1{sl}(s), ∀s ∈ S

Proof. Let πopt = 1 − 1{sl}(s), ∀s ∈ S. The proof is straightforward if the following

hold true:
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1. (a) Qswitch,π 6=πopt

s∈k1
< Qswitch,πopt

s∈k1
& (b) Qswitch,π 6=πopt

s∈k0
< Qswitch,πopt

s∈k1

2. (a) Qstay,π 6=πopt

s∈k1
< Qstay,πopt

s∈k1
& (b) Qstay,π 6=πopt

s∈k0
< Qstay,πopt

s∈k1

3. (a) Qswitch,π 6=πopt

s∈k1
< Qswitch,πopt

s∈k0
& (b) Qswitch,π 6=πopt

s∈k0
< Qswitch,πopt

s∈k0

4. (a) Qstay,π 6=πopt

s∈k1
< Qstay,πopt

s∈k0
& (b) Qstay,π 6=πopt

s∈k0
< Qstay,πopt

s∈k0

Each of the above inequalities are proved in turn. We use the sets k0 and k1 that were

defined in Lemma 6. For the policy πopt, k0 = {sl} and k1 = S \ sl ((n− 1) elements).

Therefore, for any other policy π 6= πopt, either |k1| = n or |k1| < (n−1). The result for

|k1| = n (switch at all states) is straightforward to show. Here, the case |k1| < (n− 1)

is considered.

Proof for 1-(a): Using the condition |k1| < n− 1 in Eq. (49), we get,

Qswitch,π 6=πopt

s∈k1
=

1

(n− 1 + γ)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(|k1| − 1))

∑
s′′∈k1

∑
s′∈S\s′′

Rswitch
s′s′′


+

γ

(1− γ) (n− 1− γ(|k1| − 1))

∑
s′′∈k0

Rstay
s′′s′′

<
1

(n− 1 + γ)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(n− 2))

∑
s′′∈S

∑
s′∈S\s′′

Rswitch
s′s′′


+

γ

(1− γ) (n− 1− γ(|k1| − 1))

∑
s′′∈k0

Rstay
s′′s′′

Using the condition Rstay
ss <

γR
stay
slsl

(n−1)−γ(n−2)
, ∀s ∈ S \ sl, we get

<
1

(n− 1 + γ)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(n− 2))

∑
s′′∈S

∑
s′∈S\s′′

Rswitch
s′s′′


+

γ

(1− γ) (n− 1− γ(|k1| − 1))

[
γ(|k0| − 1)

(n− 1)− γ(n− 2)
+ 1

]
Rstay
slsl

Substituting |k0| = n− |k1| and solving, we get

=
1

(n− 1 + γ)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(n− 2))

∑
s′′∈S

∑
s′∈S\s′′

Rswitch
s′s′′


+

γ

(1− γ) ((n− 1)− γ(n− 2))
Rstay
slsl

= Qswitch,πopt

s∈k1
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Hence, Qswitch,π 6=πopt

s∈k1
< Qswitch,πopt

s∈k1
.

Proof for 1-(b): From Eq. (50) we have,

Qswitch,π 6=πopt

s∈k0
=

1

(n− 1)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(|k1| − 1))

∑
s′′∈k1

∑
s′∈S\s′′

Rswitch
s′s′′


+

γ

(1− γ)(n− 1)

[
(n− 1 + γ)

(n− 1− γ(|k1| − 1))

∑
s′′∈k0

Rstay
s′′s′′

]
− γ

(n− 1)(1− γ)
Rstay
ss

=
1

(n− 1 + γ)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

n− 1

∑
s′∈S\s

Rswitch
ss′ +

γ(n− 1 + γ)
∑
s′′∈k1

∑
s′∈S\s′′

Rswitch
s′s′′

(n− 1) (n− 1− γ(|k1| − 1))



+

γ

[
(n− 1 + γ)

∑
s′′∈k0

Rstay
s′′s′′ − (n− 1− γ(|k1| − 1))Rstay

ss

]
(1− γ)(n− 1) (n− 1− γ(|k1| − 1))

Substituting the following in the first term of R.H.S.:

• (n− 1)− γ(n− 2) < (n− 1),

• since R has all non-negative entries
∑
s′∈S\s

Rswitch
ss′ <

∑
s′′∈k0

∑
s′∈S\s′′

Rswitch
s′s′′ , and

• it can easily be shown that
n− 1 + γ

n− 1
<
n− 1− γ(|k1| − 1)

n− 1− γ(n− 2)
, we get,

Qswitch,π 6=πopt

s∈k0
<

1

(n− 1 + γ)

 ∑
s′∈S\s

Rswitch
ss′ +

γ
∑
s′′∈k0

∑
s′∈S\s′′

Rswitch
s′s′′

(n− 1)− γ(n− 2)
+

γ
∑
s′′∈k1

∑
s′∈S\s′′

Rswitch
s′s′′

(n− 1− γ(n− 2))



+

γ

[
(n− 1 + γ)

∑
s′′∈k0

Rstay
s′′s′′ − (n− 1− γ(|k1| − 1))Rstay

ss

]
(1− γ)(n− 1) (n− 1− γ(|k1| − 1))

=
1

(n− 1 + γ)

 ∑
s′∈S\s′

Rswitch
ss′ +

γ
∑
s′′∈S

∑
s′∈S\s′′

Rswitch
s′s′′

(n− 1)− γ(n− 2)



+

γ

[
(n− 1 + γ)

∑
s′′∈k0

Rstay
s′′s′′ − (n− 1− γ(|k1| − 1))Rstay

ss

]
(1− γ)(n− 1) (n− 1− γ(|k1| − 1))
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Substituting
∑
s′′∈k0

Rstay
s′′s′′ =

∑
s′′∈k0\sl

Rstay
s′′s′′+R

stay
slsl

and the conditionRstay
ss <

γR
stay
slsl

(n−1)−γ(n−2)
, ∀s ∈

S \ sl in the second term of R.H.S., we get,

<
1

(n− 1 + γ)

 ∑
s′∈S\s′

Rswitch
ss′ +

γ
∑
s′′∈S

∑
s′∈S\s′′

Rswitch
s′s′′

(n− 1)− γ(n− 2)



+

γRstay
slsl

[
(n− 1 + γ)(|k0| − 1)γ

(n− 1)− γ(n− 2)
+ (n− 1 + γ)− (n− 1− γ(|k1| − 1)) γ

(n− 1)− γ(n− 2)

]
(1− γ)(n− 1) (n− 1− γ(|k1| − 1))

=
1

(n− 1 + γ)

 ∑
s′∈S\s′

Rswitch
ss′ +

γ
∑
s′′∈S

∑
s′∈S\s′′

Rswitch
s′s′′

(n− 1)− γ(n− 2)


+
γRstay

slsl
[(n− 1 + γ)(n− |k1| − 1)γ + (n− 1 + γ)(n− 1 + 2γ − nγ)− (n− 1 + γ − γ |k1|)γ]

(1− γ)(n− 1)(n− 1− γ(n− 2))(n− 1− γ(|k1| − 1))

Upon factoring we get,

=
1

(n− 1 + γ)

 ∑
s′∈S\s′

Rswitch
ss′ +

γ
∑
s′′∈S

∑
s′∈S\s′′

Rswitch
s′s′′

(n− 1)− γ(n− 2)



+
γRstay

slsl
[(n− 1)(n− 1− γ(|k1| − 1))]

(1− γ)(n− 1)(n− 1− γ(n− 2))(n− 1− γ(|k1| − 1))

= Qswitch,πopt

s∈k1

Hence, Qswitch,π 6=πopt

s∈k0
< Qswitch,πopt

s∈k1
.

Proof for 2-(a): Qstay,π 6=πopt

s∈k1
= Rstay

ss + γQswitch,π 6=πopt

s < Rstay
ss + γQswitch,πopt

s = Qstay,πopt

s∈k1
.

Hence, Qstay,π 6=πopt

s∈k1
< Qstay,πopt

s∈k1
.

Proof for 2-(b): From Eq. (48) we have, Qstay,π 6=πopt

s∈k0
=

Rstay
ss

1− γ
= Rstay

ss +
γRstay

ss

1− γ
. Using

the condition Rstay
ss <

γR
stay
slsl

(n−1)−γ(n−2)
, ∀s ∈ S \ sl, we get,

Qstay,π 6=πopt

s∈k0
< Rstay

ss + γ

(
γRstay

slsl

(1− γ)(n− 1− γ(n− 2))

)
< Rstay

ss + γQswitch,πopt

s = Qstay,πopt

s∈k1
.

Hence, Qstay,π 6=πopt

s∈k0
< Qstay,πopt

s∈k1
.
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Proof for 3-(a): For the optimal policy πopt, the set k0 = {sl}. Therefore, if s ∈ k0,

then s = sl. Substituting this in the inequality 3-(a) that needs to proved, we get,

Qswitch,π 6=πopt

sl∈k1
< Qswitch,πopt

sl
. (57)

For the policy π, since sl ∈ k1, this implies sl /∈ k0. From Eq. (49) we have,

Qswitch,π 6=πopt

sl∈k1
=

1

(n− 1 + γ)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(|k1| − 1))

∑
s′′∈k1

∑
s′∈S\s′′

Rswitch
s′s′′


+

γ

(1− γ) (n− 1− γ(|k1| − 1))

∑
s′′∈k0

Rstay
s′′s′′

Substituting the following:

• |k1| < n− 1,

• since R has all non-negative entries
∑
s′′∈k1

∑
s′∈S\s′′

Rswitch
s′s′′ <

∑
s′′∈S

∑
s′∈S\s′′

Rswitch
s′s′′ ,

• using the condition Rstay
ss <

γR
stay
slsl

(n−1)−γ(n−2)
, ∀s ∈ S \ sl, and

• since sl /∈ k0,
∑

s′′∈k0
Rstay
s′′s′′ <

γ|k0|Rstay
slsl

(n−1)−γ(n−2)
, we get,

<
1

(n− 1)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(n− 2))

∑
s′′∈S

∑
s′∈S\s′′

Rswitch
s′s′′


+

γ(n− |k1|)
(1− γ) (n− 1− γ(|k1| − 1))

γRstay
slsl

(n− 1− γ(n− 2))

Since |k1| ≥ 1 and γ ≤ 1, it can be easily shown that (n−|k1|) ≤ (n−1−γ(|k1|−1)).

Using this result, we get,

≤ 1

(n− 1)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(n− 2))

∑
s′′∈S

∑
s′∈S\s′′

Rswitch
s′s′′


+

γ

(1− γ)

γRstay
slsl

(n− 1− γ(n− 2))

=
1

(n− 1)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(n− 2))

∑
s′′∈S

∑
s′∈S\s′′

Rswitch
s′s′′


+

γRstay
slsl

(1− γ)(n− 1)

(n− 1) + γ − (n− 1− γ(n− 2))

(n− 1− γ(n− 2))
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=
1

(n− 1)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(n− 2))

∑
s′′∈S

∑
s′∈S\s′′

Rswitch
s′s′′


+

γRstay
slsl

(1− γ)(n− 1)

n− 1 + γ

(n− 1− γ(n− 2))
−

γRstay
slsl

(1− γ)(n− 1)
= Qswitch,πopt

s∈k0

Hence, Qswitch,π 6=πopt

s∈k1
< Qswitch,πopt

s∈k0
.

Proof for 3-(b): As discussed in the Proof for 3-(a), s = sl. Substituting the condition

|k1| < n− 1 in Eq. (50), we get,

Qswitch,π 6=πopt

sl∈k0
=

1

(n− 1)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(|k1| − 1))

∑
s′′∈k1

∑
s′∈S\s′′

Rswitch
s′s′′


+

γ

(1− γ)(n− 1)

[
(n− 1 + γ)

(n− 1− γ(|k1| − 1))

∑
s′′∈k0

Rstay
s′′s′′

]
− γ

(n− 1)(1− γ)
Rstay
slsl

<
1

(n− 1)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(n− 2))

∑
s′′∈k1

∑
s′∈S\s′′

Rswitch
s′s′′


+

γ

(1− γ)(n− 1)

[
(n− 1 + γ)

(n− 1− γ(|k1| − 1))

∑
s′′∈k0

Rstay
s′′s′′

]
− γ

(n− 1)(1− γ)
Rstay
slsl

Substituting
∑
s′′∈k0

Rstay
s′′s′′ =

∑
s′′∈k0\sl

Rstay
s′′s′′+R

stay
slsl

and the conditionRstay
ss <

γR
stay
slsl

(n−1)−γ(n−2)
, ∀s ∈

S \ sl in the second term of R.H.S. and solving, we get,

<
1

(n− 1)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(n− 2))

∑
s′′∈k1

∑
s′∈S\s′′

Rswitch
s′s′′


+

γRstay
slsl

(1− γ)(n− 1)

n− 1 + γ

(n− 1− γ(n− 2))
−

γRstay
slsl

(1− γ)(n− 1)
= Qswitch,πopt

sl∈k0

Hence, Qswitch,π 6=πopt

s∈k0
< Qswitch,πopt

s∈k0
.

Proof for 4-(a)&(b): This proof is straightforward since,

Qstay,π 6=πopt

s∈k1ork0
< max(Qπopt

) = Qstay,πopt

s∈k0
.

Hence, Qstay,π 6=πopt

s∈k1
< Qstay,πopt

s∈k0
& Qstay,π 6=πopt

s∈k0
< Qstay,πopt

s∈k0
.

The convergence of the algorithm’s policy π and the adaptive abstraction φ̂ to their

respective optimal fixed-points is proved next.
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Theorem 4. Let {πt}t∈N denote the sequence of observation stream selection policies

generated by the algorithm for ε = 1. If σ < |U |/(6N roc), β < 1 and Conditions

(45)-(47) hold then,

lim
t→∞

πt(s) = π∗(φ∗, s), ∀s ∈ S

Proof. When ε = 1, the algorithm performs a random walk over the states taking ac-

tions stay and switch with equal probability at each state. For each action, the agent

receives a small set of τ samples from the observation stream corresponding to the tran-

sitioned state. Since the action switch shifts the agent’s state uniformly randomly, the

CCICPA weights (whitening vectors) of the adaptive abstraction φ̂sfa converge quickly,

while the CIMCA weights diffuse around randomly (due to the absence of a consis-

tent temporal structure). Therefore, φ̂sfa which is a product of CCIPCA and CIMCA

weights, can be assumed to be a random variable. When the agent transitions to a new

state (say at time t0), the randomly initialized CIMCA weights are updated based on

the temporally coherent samples from the corresponding observation stream, until the

agent transitions out to a new state. We use the analysis discussed in Section 4.1 to find

the relationship between the curiosity rewards accumulated in each state.

LetRcur denote the steady state curiosity-reward function andRexp denote the steady

state expert-reward function (R = Rcur +Rexp). The proof has three parts:

1. We find the relationship between the steady state curiosity rewards for the stay

action in each state.

2. We show that the curiosity rewards for the switch action are less than the stay

action.

3. We show that the expert rewards are negligible compared to the dominant curios-

ity rewards.

We use these subparts to finally show the main result.

1. Here, we find the steady state curiosity-reward function term Rcur(si, 0, si) for

the stay action (a=0). To this end, we find the probability of a k-stay continuous action

sequence (Figure 6) and find the corresponding average curiosity reward (see Eq. (14)).

Starting from a random state s 6= si, the agent transitions to the state si by executing
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s≠si si si

t0+τt0

τ samples
from xi

kτ samples
from xi

t0+1 t0+τ+1

si s≠si

t0+(k+1)τ t0+(k+2)τ

si

t0+2τ t0+3τ

stay stay stay switchswitch

k stay action sequence

Figure 6: Transition diagram of a k-stay action sequence.

a switch action with a probability of 1/2(n − 1) (see Eq. (15)). The agent receives τ

samples from the stream xi for this transition. The agent then executes its first stay

action with a probability of 1/2 and continues to observe τ samples from the same

stream xi. The curiosity reward (computed through backward difference approx.) for

the τ samples within the first stay action is equivalent to the curiosity rewards received

for the time period (τ, 2τ) of a randomly initialized φ̂sfa at t = t0.

rsi,si0 =
2τ∑
t′=τ

[
ξsfa
i (t′)− ξsfa

i (t′ + 1)
]

(58)

= ξsfa
i (τ)− ξsfa

i (2τ). (59)

From Lemma 5, ξsfa
i (t) is an exponentially decaying function ξsfa

i (2τ) = ςτi ξ
sfa
i (τ),

where ςi = Ωq
i .

rsi,si0 = ξsfa
i (τ)(1− ςτi ) (60)

The curiosity reward for the subsequent τ time steps = ςτi r
si,si
0 . The expected reward for

all possible k-stay action sequences; Rcur(si, 0, si) =

∞∑
k=1

Pr

(
s(t0 + (k + 1)τ) = si, ..., s(t0 + τ) = si

∣∣∣∣∣{s(t0), s(t0 + (k + 2)τ)} ∈ S \ si

)

× (1 + ...+ ς
τ(k−1)
i )rsi,si0

k
. (61)

The probability term (Pr) in the summation is the probability that the agent’s state

remains the same for the next k algorithm iterations after switching from another state.
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Since the transition process between the states is Markovian, the probability term is

equal to:

Pr

(
s(t0 + (k + 2)τ) ∈ S \ si

∣∣∣∣∣s(t0 + (k + 1)τ) = si

)
×

k∏
p=1

Pr

(
s(t0 + (p+ 1)τ) = si

∣∣∣∣∣s(t0 + pτ) = si

)
×

Pr

(
s(t0 + τ) = si

∣∣∣∣∣s(t0) ∈ S \ si

)
=

1

2
× 1

2k
× 1

2(n− 1)
. (62)

Substituting in Eq. (61), we get

Rcur(si, 0, si) =
1

4(n− 1)

∞∑
k=1

1

2k
(1− ςτki )rsi,si0

k(1− ςτi )
, (63)

=
ξsfa
i (τ)

4(n− 1)

∞∑
k=1

1

k

1

2k
− 1

k

(
ςτi
2

)k
. (64)

Using Maclaurin series of log(1− 1
2
) and log(1− ςi

2
) and solving, we get

Rcur(si, 0, si) =
ξsfa
i (τ)

4(n− 1)
ln(2− ςτi ). (65)

If Ω(xi) < Ω(xj), then ξsfa
i (τ) > ξsfa

j (τ) and ςτi < ςτj (see Lemma 5). Therefore,

Rcur(si, 0, si) > Rcur(sj, 0, sj). This implies, Rcur(sl, 0, sl) = maxiR
cur(si, 0, si).

2. Figure 7 shows the state transition diagram of a switch action from a state sj 6=i to

the state si. From Lemma 3 and Condition (46), the accumulated curiosity rewards for

the switch action for the period (0, τ) is less than zero. Therefore, Rcur(si, 1, sj) < 0

and Rcur(sl, 0, sl) > Rcur(si, 1, sj).

3. Here, we discuss the contribution of the expert reward term (Eq. (11)). Slow

feature outputs y(t) have unit variance, zero mean (see Section 3.1) and resemble half

cosine functions [Franzius et al., 2007]. When ε = 1, the adaptive abstraction (φ̂sfa)

outputs change rapidly resulting in high ROC errors. The average estimation error of

|U |ROC nodes, withN roc max clusters initialized for each node, is |U |/N roc. Therefore,

for the values of σ < |U |/(6N roc) (six-sigma of a Gaussian) and β < 1, the Gaussian

function output in Eq. (11) is of the order of magnitude less than 10−9. Whereas, the

dominant instantaneous curiosity rewards (Eqs. (60)-(26)) are of the order of minimum

magnitude > 10−5 when (Ω < 0.999), τ > 20 and I > 3. Therefore, the expert
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sj≠i si

t0+τt0

τ samples
from xi

t0+1

switch

Figure 7: State transition diagram of the switch action.

rewards are negligible compared to the dominant curiosity rewards: R ≈ Rcur. This

implies, R(sl, 0, sl) = maxR.

From Eq. (65), we have

R(si, 0, si)

R(sl, 0, sl)
=
ξsfa
i (τ) ln(2− ςτi )

ξsfa
l (τ) ln(2− ςτl )

<
ln(2− ςτi )

ln(2− ςτl )
.

Using Taylor series for ln(2−x) at x close to 1, we get ln(2−x) ≈ − ln(x). Therefore,

we have

R(si, 0, si)

R(sl, 0, sl)
<
− ln(ςi)

− ln(ςl)
=
− ln(Ωi)

− ln(Ωl)
<

1

(1 + (n− 1)(1− γ)/γ)
.

It follows from Lemma 7 and Theorem 3 that lim
t→∞

πt(s) = π∗(φ∗, s), ∀s ∈ S.

Theorem 4 shows that during pure exploration (ε = 1), πt converges to a policy with

an action stay for the state (sl) corresponding to the current easiest but not yet encoded

observation stream (xl), and the action switch for rest of the states. Also, since the

policies πt and π∗(φ∗) are binary-vectors, it follows that ∃tc ∈ N (t0 < tc < ∞), s.t.

for t = tc, πt = π∗(φ∗).

Theorem 5. Let {φ̂t}t∈N denote the sequence of adaptive abstractions generated by the

algorithm for ε = 0. If πtc = π∗(φ∗), Rtc(sl, stay, sl) = max(Rtc), β > 0.367
√
I

τ
and

Conditions (45),(46) and (47) hold, then

lim
t→∞

φ̂t = φ∗

Proof. When ε = 0, the agent exploits the observation stream selection policy πtc .

Therefore, the agent observes samples from xl and IncSFA-ROC makes learning progress.
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As a result, the IncSFA-ROC errors and the curiosity-rewards diminish exponentially

(see the proof of the previous theorem). The expert-reward term in Eq. (11) now be-

comes dominant compared to the curiosity-reward term. If β is set such that the expert-

reward term is greater than the maximum curiosity-reward, it ensures Rt(sl, stay, sl) =

max(Rt). The maximum instantaneous curiosity rewards for IncSFA can be found by

differentiating Eq. (27):

drsfa(t)

dt
=

Ωt ln3 (Ω)
√
I (4b2Ω4t − 10bΩ2t + 1)

(bΩ2t + 1)
7
2

. (66)

Solving for roots, we get the maximum when −t ln(Ω) =
ln( 4b

5−
√

21
)

2
≈ 0.5 ln(9.58b).

Substituting t = τ and simplifying by using the result max( ln2(x)√
x

) = 16e−2, we get

max rsfa(t) =
0.367

√
I

τ 2
. (67)

For τ samples, max
∫
τ
rsfa(t) < 0.367

√
I

τ
. Setting 1 > β > 0.367

√
I

τ
would make the

weighted expert-reward term βZδ,σ(〈ξroc〉τt ) converge to a value greater than 0.367
√
I

τ
as

〈ξroc〉τt → δ, while also satisfying the constraint for Theorem 4. This ensures that the

policy remains optimal πt>tc = π∗(φ∗) and from Theorem 2 the result follows.

When 〈ξroc〉τt < δ, the adaptive abstraction φ̂ is frozen and saved to the abstraction

set Φt (Φt ← Φt∪φ̂). Theorems 2-5 show that the saved abstraction satisfies Constraints

(3)-(4) and the cardinality of the abstraction set increments by a value 1. The process

repeats until all the abstractions have been learned.

Theorem 5 requires tc, the time at which the policy π has converged. However, in

practice tc is not known a priori and is generally difficult to estimate. The ε-greedy

strategy is a simple heuristic that we found to be useful for transitioning from ε = 1

(pure exploration) to ε = 0 (pure exploitation). By selecting a decay-constant close

to 1 the algorithm has sufficient time for the policy to converge to the optimal. Later

in Section 5 we discuss the overall hyper-parameters of the algorithm along with an

intuition on how to tune them. Next, we discuss the performance of the algorithm when

a few of the conditions that were assumed to be true for the above analysis are not held.

Case – Condition (47) is not held. Here, we discuss the performance of the al-

gorithm when a few observation streams violate Condition 47. Let r = γ
(n−1−γ(n−2))

.
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Substituting r in Condition (47) we get

ln(Ω(xi)) < r ln(Ω(xj)), ∀Ω(xi)) > Ω(xj). (68)

Definition 3. A stream x is r-dominated by another stream x′ if ln(Ω(x)) < r ln(Ω(x′)).

Using the above definition we show that the algorithm cannot find the easier stream

to encode between two streams that are not r-dominated.

Theorem 6. Let {πt}t∈N denote the sequence of observation stream selection policies

generated by the algorithm for ε = 1. Let Sr be the set of states whose corresponding

observation streams are not r-dominated by xl. If Conditions (45) and (46) hold, then,

πt(s) has two limits points equal to
(
1− 1{sl}(s)

)
or (1− 1Sr(s)), ∀s ∈ S.

Proof. From Theorem 4, we get
Rstay
ss

Rstay
slsl

≥ γ

(n− 1− γ(n− 2))
, ∀s ∈ Sr \ sl.

LetRstay
ss =

γRstay
slsl

(n− 1− γ(n− 2))
+ εs, where εs, ∀s ∈ Sr\sl are non-negative constants.

Let π∗ = 1− 1{sl}(s) and π̂ = 1− 1Sr(s), ∀s ∈ S. From Eq. (49) and substituting for

Rstay
ss we have,

Qswitch,π̂
s∈k1

=
1

(n− 1 + γ)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(|k1| − 1))

∑
s′′∈k1

∑
s′∈S\s′′

Rswitch
s′s′′


+

γ

(1− γ) (n− 1− γ(|k1| − 1))

∑
s′′∈k0

Rstay
s′′s′′

=
1

(n− 1 + γ)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(|k1| − 1))

∑
s′′∈k1

∑
s′∈S\s′′

Rswitch
s′s′′


+

γ

(1− γ) (n− 1− γ(|k1| − 1))

Rstay
slsl

+
∑

s′′∈k0\sl

Rstay
s′′s′′



=
1

(n− 1 + γ)

 ∑
s′∈S\s

Rswitch
ss′ +

γ

(n− 1− γ(|k1| − 1))

∑
s′′∈k1

∑
s′∈S\s′′

Rswitch
s′s′′


+

γ

(1− γ) (n− 1− γ(|k1| − 1))

( γ(|k0| − 1)

(n− 1)− γ(n− 2)
+ 1

)
Rstay
slsl

+
∑

s′′∈k0\sl

εs′′


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= Qswitch,π∗
s∈k1

− γ

(n− 1 + γ)


∑
s′′∈S

∑
s′∈S\s′′

Rswitch
s′s′′

(n− 1− γ(n− 2))
−

∑
s′′∈k1

∑
s′∈S\s′′

Rswitch
s′s′′

(n− 1− γ(|k1| − 1))


+

γ

(1− γ) (n− 1− γ(|k1| − 1))

∑
s′′∈k0\sl

εs′′

= Qswitch,π∗
s∈k1

− A+B

Both A and B are non-zero. So, clearly when B > A, Qswitch,π̂
s∈k1

> Qswitch,π∗
s∈k1

. Therefore,

arg max
π

Qπ 6= π∗. Evaluating similarly for Qstay or switch,π̂
s∈k1 or k0

we get, for the condition B >

A, arg max
π

Qπ = π̂.

Theorem 6 shows that if a few observation streams violate the Condition (47), then

π is not guaranteed to converge to the optimal policy (Theorem 3). It instead converges

to a sub-optimal policy, which returns an action stay in all the states whose observation

streams are not r-dominated with xl and switch in all the remaining states. This differs

from the optimal policy, where the action stay is returned for the state sl and switch

in all the other states. The suboptimal policy during exploitation makes the algorithm

converge to an abstraction encoding any of the observation streams corresponding to

the states in Sr, with an uniform probability over multiple experiment trials. As an

example, consider X = {xa,xb,xc,xd} with Ω(xa) < Ω(xb) < Ω(xc) < Ω(xd). If

xa and xb are not r-dominated, then the algorithm generates the following sequence of

abstractions with equal probability over multiple trials:

1. Φ = {φxa
1 , φxb

2 , φ
xc
3 , φ

xd
4 } (optimal),

2. Φ = {φxb
1 , φ

xa
2 , φxc

3 , φ
xd
4 },

where φxa
1 denotes the first abstraction learned corresponding to the stream xa. These

two sequences differ only in the first two terms. Therefore, the sub-optimality is local

and does not effect the order of the remaining streams. When the above experiment

is executed over many trials, the algorithm converges to the optimal sequence (first

sequence) for half the number of trials and another half to the sub-optimal sequence

(second sequence). Intuitively, the Condition (47) denotes how far apart should a pair of

observation streams be in terms of their curiosity function values, to be distinguished as

two different streams by the algorithm. We find that the condition is easily met between
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two difficult-to-learn streams than two very easy-to-learn streams. The reasons are as

follows. Let b denote the difference of b = Ω(xi)− Ω(xj). Substituting r and b > 0 in

Condition (47) we get

b > br = Ω(xj)
r − Ω(xj). (69)

The above condition denotes how far apart should be the learning difficulties of any

two observation streams. It can be inferred that as Ω(xj) → 1, br → 0. Therefore, for

a given n and γ, the condition is most-likely met for observation streams with higher

Ω(xj) (difficult-to-learn streams) than with lower Ω(xj). In the limiting case of γ = 1,

the condition is always met. Therefore, setting γ close to 1 the condition can be met for

most observation streams. The only drawback of selecting a γ very close to 1 is that it

increases the convergence time of LSPI.

Case – n ≤ 2: For n = 2, i.e. two states S = {s1, s2}, the stochastic switch action

is equivalent to a deterministic switch to the other state. Therefore, Curious Dr. MISFA

can learn an abstraction by switching between the states (i.e., only if both observation

streams are individually encodable). If Ω(xmix) < min(Ω(x1),Ω(x2)), where xmix de-

notes the mixture stream, then the algorithm will learn a policy that switches the agent’s

state to the other (π = [1, 1]). This results in an abstraction corresponding to the mix-

ture stream. In this special case, the algorithm will learn a total of 3 abstractions. For

n = 1, the solution is trivial, the algorithm learns an abstraction corresponding to the

observation stream, irrespective of the observation stream selection policy.

Case – J ≥ 1: The columns in the slow-feature matrix φ̂sfa denote the slow-feature

vectors ordered according to how fast or slow the corresponding output changes in time

(see Section 3.1). IncSFA uses the sequential addition [Chen et al., 2001, Kompella

et al., 2012a] technique to update all the slow-feature vectors simultaneously for each

sample; the slowest feature is updated first, then the sequential addition technique shifts

each observation into a space where the minor component of the current space will

be the first PC, and all other PCs are reduced in order by one. Therefore, the curios-

ity function for the second slow feature is
[
1− ηsfa(λK−2−λK−1)

1−ηsfa−ηsfaλK−1

]
, where K denotes the

dimensionality of the whitened output of xi(t). When J > 1, the overall learning dif-

ficulty of the input stream (Definition 1) is equal to the learning difficulty of the most
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difficult slow feature component. The resultant curiosity function is as follows:

Ωres(xi) = max
j

{[
1− ηsfa(λK−1 − λK)

1− ηsfa − ηsfaλK

]
, ...,

[
1− ηsfa(λK−j − λK−J+1)

1− ηsfa − ηsfaλK−J+1

]}
,

where λK 6= λK−j, j ∈ {1, ..., J} denote the J smallest eigenvalues of E[żiż
T
i ], and

zi(t) ∈ RK is the whitened output of xi(t).

In Curious Dr. MISFA, the Frobenius norm of the temporal difference of the slow-

feature matrix is used to compute the curiosity rewards. In the case when J > 1,

the weight change within the τ samples due to the easier-to-learn components may

dominate the curiosity rewards (especially when J is small). These rewards may not

truly estimate Ωres of a stream. One approach to address this issue is to compute column-

wise Frobenius norm and set the minimum as the reward:

ξsfa(t) =
[
‖φ̂sfa1(t)− φ̂sfa1(t− 1)‖, ..., φ̂sfaJ(t)− φ̂sfaJ(t− 1)‖

]
, (70)

rsfa(t) = min
j

{
−
∫
τ

ξ̇sfa1dt, ...,−
∫
τ

ξ̇sfaJdt

}
. (71)

where ‖.‖ denotes the Frobenius norm, φ̂sfai denotes the ith column of φ̂sfa. This way,

Curious Dr. MISFA learns the first abstraction corresponding to the stream with the

least Ωres.

Case – xi is IncSFA encodable but not ROC encodable: If this assumption is not

held and xi is the current easiest and novel observation stream, then Theorem 5 will

not hold true. The reasons are explained as follows. When ε = 1, the agent’s pol-

icy converges to 1 − 1{si}(s), ∀s ∈ S. When the agent begins to exploit this policy,

the curiosity-rewards diminish exponentially. If the slow-feature outputs are not corre-

lated with the user-signal u, ROC’s estimation error ξroc(t) will be high and therefore,

the expert-reward term in Eq. (11) will be close to zero. As a result, the reward func-

tion term Rt(si, stay, si) decreases exponential due to the absence of both curiosity and

expert rewards. When the reward term falls below the one corresponding to the next

easiest observation stream Rt(si, stay, si) < Rt(sj, stay, sj), then Rt(sj, stay, sj) =

maxRt. The LSPI algorithm learns a new policy 1−1{sj}(s), ∀s ∈ S. If xj is IncSFA-

ROC encodable, then Theorem 5 holds true and the algorithm learns an abstraction

corresponding to it. Otherwise, the above process repeats until the easiest IncSFA-ROC

encodable observation stream is found. The resultant learned abstraction set will be

optimally ordered, albeit, the time taken will be longer.
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Case – Condition (46) is not held. From Lemma 3, we find that selecting a very

small τ may result in the accumulation of negative rewards for the stay action. This

may lead to an unstable result. One way to address this issue is to adapt τ such that

the maximum of the reward function for the stay action is always positive, that is,

maxR(si, 0, si) > 0, when ε = 1.

5 Pseudocode and Hyper Parameters

The constant hyper parameters that need to be set for the working of the algorithm are

as follows: (1) IncSFA learning rate ηsfa, (2) ROC amnesic rate ηroc, (3) ROC max

clusters N roc, (4) threshold δ, (5) ε decay multiplier, (6) τ , (7) σ and (8) β. IncSFA uses

a constant learning rate ηsfa that is quite intuitive to set Kompella et al. [2012a]. The

amnesic parameter ηroc is used to make ROC adaptive. Higher values will make ROC

adapt faster to the new data, however at the cost of being less stable. Since, the learning

rates are not adapted during the experiments, the effect of selecting different learning

rates that ensure convergence of IncSFA-ROC, do not effect the outcome of the final

result. The maximum number of clusters N roc in ROC is set to encode multiple slow

feature values for each ui ∈ U . Higher values can be used, however, very high values

may lead to spurious clusters. δ is generally set to values close to zero < 1 depending

on how well the expert modules need to encode the inputs. ε decay multiplier is set

close to 1 for sufficient exploration and is reduced to a lower value when ε is low, to

transition quickly to the pure exploitation mode. τ is usually set to a small number or

can be adapted to keep the maximum of the reward function positive. The parameters

σ and β correspond to the expert-reward term of the reward function 11. The effect of

varying these parameters on the algorithm are discussed in detail through experiments

in Section 6.2.

Algorithm 1 summarizes Curious Dr. MISFA. A Python-based implementation of

the algorithm can be found here: https://dl.dropboxusercontent.com/u/

12734807/cdmisfa.zip.
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Algorithm 1: CURIOUS DR. MISFA

1 Φ0← {}, πb0← RANDOM (), φ̂← 0, G← true, R̃← 0

2 for t← 0 to∞ do

3 st← current state, at← πbt (st) //Sense

4 Take action at, observe next state st+1(= P (st, at)) and τ input samples(
x(t; τ) = xst+1(t; τ),u(t; τ)

)
5 for each φ in Φt do

6 −
∫
τ
ξ̇sfadt, 〈ξroc〉τt ← Compute-Error((x(t; τ),u(t; τ)), φ)

7 if 〈ξroc〉τt < δ then

8 G← false //Update gating flag

9 end

10 end

11 r← 0, 〈ξroc〉τt ←∞ //Initialize default values

12 if G is true then

//Update adaptive IncSFA-ROC

13 φ̂← Θ
(

(x(t; τ),u(t; τ)), φ̂
)

14 −
∫
τ
ξ̇sfadt, 〈ξroc〉τt ← Compute-Error

(
(x(t; τ),u(t; τ)), φ̂

)
15 r←−

∫
τ
ξ̇sfadt+ βZδ,σ(〈ξroc〉τt )

16 end

//Update reward function

17 R̃stst+1
at ← αr + (1− α)R̃stst+1

at , Rt← R̃/‖R̃‖

//Update observation stream selection policy

18 πt+1←Model-LSPI (S,A, P,Rt)

//Update behavior policy

19 πbt+1← ε-greedy(πt+1)

20 if 〈ξroc〉τt < δ then

21 Φt+1← Φt ∪ φ̂ //Save Module

22 πbt+1← RANDOM (), φ̂← 0, G← true, R̃← 0 //Reset

23 end

24 end
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6 Experimental Results

We present here experimental results conducted on oscillatory test streams to support

the theoretical analysis presented in Section 4. More studies on the types of represen-

tations learned by the IncSFA algorithm, and applications of Curious Dr. MISFA on

humanoid platforms with high-dimensional video inputs can be found in our previous

work [Kompella et al., 2012a, Luciw et al., 2013, Kompella et al., 2014, 2015].

6.1 Proof of Concept

In this experiment, the convergence of the algorithm is illustrated for an input that con-

sists of three 2D nonlinear oscillatory audio streams X = {x1,x2,x3}, each encodable

by IncSFA:

x1 :

 x1(t) = sin(4 θt − π/4.)− cos(44 θt)
2

x2(t) = cos(44 θt)
, (72)

x2 :

 x1(t) = sin(3 θt) + cos(27 θt)
2

x2(t) = cos(27 θt)
, and (73)

x3 :

 x1(t) = cos(12 θt)

x2(t) = cos(2 θt) + cos(12 θt)
2
, (74)

where θt = 2π(t%500)/500, % denotes the modulo operator. The environment has

three states S = {s1, s2, s3} associated with the observation streams. Since a user-

signal is unavailable, the algorithm assumes u(t) to indicate a time-index of a period

= 500, U = [0, 499] and u(t) = t%(500). Figure 8(a) illustrates the environment.

The slowest feature in the stream x1 is y1(t) = x1(t) + x2(t)2 = sin(4 θt − π/4.).

For the streams x2 and x3, the features are y2(t) = x1(t) − x2(t)2 = sin(3 θt) and

y3(t) = −x1(t)2 + x2(t)2 = cos(2 θt) respectively. To extract these slow features,

each observation stream is expanded via a polynomial expansion of degree 2 to a 5

dimensional stream (see Section 3.1). The expanded streams have the following cu-

riosity function values: Ω1 = 0.98979, Ω2 = 0.99611, and Ω3 = 0.99924. Therefore,

observation stream x1 is the easiest stream to encode followed by x2 and then x3.

Experiment parameters: We use a fixed parameter setting for the entire experi-

ment. ηsfa = 0.05, J = 1. There are a total of p = 500 ROC clustering nodes (see
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Section 3.1). N roc = 2. δ = 0.3, ηroc = 0.2. We initialized ε to 1.1, so that the agent

explores long enough. However, when used as a probability, any value of ε > 1 is con-

sidered as 1. ε decays after every algorithm iteration with a multiplier equal to 0.998

and is set to 0.99 when ε < 0.9. γ = 0.99, τ = 100, α = 0.0198(= 2/N + 1) (a

moving average of period 100 algorithm iterations). σ and β are set to 50 and 0.01

respectively based on the conditions from Theorems 4 and 5 (we discuss the effect of

selecting different values in Section 6.2). To avoid the influence of any large initial

noisy IncSFA-ROC weight changes, we clip the curiosity-rewards between (−0.5, 0.5).

The dynamics of the algorithm can be observed by studying the time varying reward

function Rt, action value function Q and the ROC estimation error ξroc(t). Figures 8(b)

and (c) show the reward function and the normalized value function for a single run of

the experiment. Both figures share a common legend. Solid lines represent the reward

in Figure 8(b) and the value in Figure 8(c) for the action stay in each state si. The

dotted lines in Figure 8(c) represent the value for the action switch in each state si and

in Figure 8(b) they represent the marginalized reward for the action switch at each state

si, (1
2

∑
j R(si, switch, sj)).

For the sake of explanation, the learning process can be thought of as passing

through three phases, where each phase corresponds to learning a single abstraction

module.

Phase 1: At the beginning of Phase 1, the agent starts exploring by executing either

stay or switch at each state. After a few hundred algorithm iterations, the reward func-

tion begins to stabilize and is such that R(s1, stay) > R(s2, stay) > R(s3, stay) > 0,

ordered according to the learning difficulty of the observation streams. However, the

reward components for the switch action are either close to zero or negative. The resul-

tant value function learned is such that the stay action is state s1 has the highest value.

Therefore, the policy π converges to the optimal policy (i.e., to stay at the state cor-

responding to the easiest observation stream x1 and switch at every other state). As ε

decays, the agent begins to exploit the learned policy, and the adaptive IncSFA-ROC

abstraction φ̂ converges to φ∗ (slow feature corresponding to the observation stream

x1). The ROC estimation error (Figure 8(d)) decreases and falls below the threshold

δ, at which point, the abstraction is added to the abstraction set Φ. The increase in the

reward value of R(s1, stay) near the end of the phase is caused by the expert-reward
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Figure 8: Synthetic Streams: See text for details. (Figures are best viewed in color)
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Figure 9: Results of the synthetic streams experiment conducted over 20 Trials. See

text for details. (Figures are best viewed in color)

term in Eq. (11). Both ε and R are reset and the algorithm enters Phase 2 at (t ≈ 70k).

Phase 2: The agent begins to explore again, however, it does not receive any reward

for the (s1, stay) tuple as the observations are filtered by the gating system. After a

few hundred algorithm iterations, R(s2, stay) > R(s3, stay) > R(s1, stay) = 0, the

adaptive abstraction converges, but to the slow feature corresponding to the observation

stream x2.

Phase 3: The process continues again until the third abstraction is learned.

Figure 9 shows results of the experiment conducted for 20 trials with different ran-

dom initializations. Figure 9(a) shows the average ROC estimation error plot, where the

shaded region represents the standard deviation. Figure 9(b) shows the reward function

of only stay action for all the 20 trials. The bold lines represent their average over the

20 trials. It is clear that for all the 20 trials the algorithm learns the abstraction corre-

sponding to the easiest stream x1 as its first abstraction module, followed by a module

for x2 and x3. Figures 9(c) and (d) show plots of the average normalized value function

and the averaged policy with standard deviation (shaded region) over 20 trials. This ex-

periment result shows that the algorithm learns abstractions for the observation streams
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in the order of the increasing learning difficulty supporting the theoretical analysis of

the problem.

6.2 The Significance of Setting β and σ

Theorems 4 and 5 discussed the broad range of values for setting the parameters σ

and β for pure exploration and exploitation phases, such that, the algorithm can learn

the optimal solution. However, when using the heuristic decaying ε-greedy strategy to

smoothly transition from pure exploration to exploitation, we find that these parameters

require further tuning to achieve optimal performance. We present here quantitative

experimental results that show the effect of selecting different tuples of (σ, β) on the

algorithm. To this end, we use the environment and the rest of the parameters discussed

in the previous section to conduct the experiments. We focus here only on the policy

learned for module 1.

Using the conditions provided in Theorems 4 and 5, we select values for σ around

|U |/(6N roc) = 42 and for β around 0.367
√
I=5

τ=100
= 0.008; σ ∈ {0.01, 20, 50, 70, 150, 300}

and β ∈ { 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. For each tuple of (σ, β),

results are collected with 20 different random initializations. Each experiment termi-

nates either when the module 1 is learned (i.e., when ξroc < δ) or the number of it-

erations cross a value greater than 650, whichever happens earlier. The learned ob-

servation stream selection policy is averaged over the 20 experiment trials (π̂) for each

tuple (σ, β). The plots of these results are shown in Figure 10(a). The optimal policy for

learning module 1 is π∗ = [0, 1, 1]. For a clearer visualization, the average policy values

are plotted against (σ, log(β)). From the plots, it is clear that the optimal performance

is achieved for a large range of tuples (20, 0.005 to 0.5), (50 to 70, 0.005 to 0.01), (150

to 300, 0.005) and a near-optimal performance for quite a few other values. This result

is also evident in Figures 10(b)-(c) that show the norm of (π̂− π∗) averaged (marginal-

ized) over all the values of σ and β respectively. The minimum error for the values of

β independent to σ is at β = 0.005 and the same for the values of σ independent to β is

at σ = 20− 50. It can also be inferred from the figures that the algorithm is sensitive to

the parameter β as compared to σ.

This experiment shows that the the conditions in Theorems 4 and 5 are a good
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Figure 10: Experiments with different (σ, β) values. (a) Averaged observation stream

selection policy π̂ learned for module 1. The policy π̂ is averaged over 20 trials of

random initializations. The optimal policy for module 1 is π∗ = [0, 1, 1]. The algorithm

with values of σ around 20 to 70 and log β around -6 to -3 learns the optimal. This is

also evident from the norm of (π̂− π∗) averaged (marginalized) over all values of (b) σ

and (c) β. See text for more details.
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Figure 12: Reward function of the unsuccessful trial. (Figure is best viewed in color)

starting values to get a near-optimal performance of the algorithm. Next, we discuss an

experiment conducted over a larger number of observation streams.

6.3 10 Different Observation Streams

The next experiment demonstrates that the algorithm scales well to a larger number

(10) of different observation streams (similar to the ones in Experiment 1). These

streams have the following increasing curiosity-function values (Ω1−Ω10): (0.981140,

0.984279, 0.987169, 0.989791, 0.991922, 0.993411, 0.995511, 0.996260, 0.997685,
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0.998256). Observation stream x1 is the easiest to learn compared to the other streams.

We use parameters similar to the previous experiment, except for the decay multiplier

which is set to 0.9999 for an increased exploration, and is reset to a value 0.99 when

ε < 0.9.

The experiment is conducted for 20 trails with different random seed initialization.

In 19 out of the 20 trials, the algorithm successfully converged to the optimal solution.

Figure 11 shows the average and standard-deviation of the reward function of module-1

for 20 trials. Clearly, the expected reward function stabilizes to a state such that: R(s1,

stay) > R(s2, stay) > R(s3, stay) > R(s4, stay) > R(s5, stay) > R(s6, stay) > R(s7,

stay) > R(s8, stay) > R(s9, stay) > R(s10, stay) > 0.

However, for the one unsuccessful trial an abstraction corresponding to the observa-

tion stream x3 was learned as the first abstraction. Figure 12 shows the reward function

for the unsuccessful trial. During exploration (higher values of ε, the reward function

did not yet stabilize in the order of Ω values of the observation streams. Therefore, as

the ε decreased to zero, the result converged to a suboptimal solution. The result can be

improved by using a larger decay multiplier. In this experiment, we showed the result

for only the first module since other modules follow a similar trend (if not better).

These experimental results demonstrate that the algorithm with the ε-greedy strat-

egy learns the optimal solution discussed in Section 2. The method as presented above

can be used in several online learning applications and is especially suited for acqui-

sition of abstractions and skills on humanoid platforms [Luciw et al., 2013, Kompella

et al., 2014]. We discuss next a few design modifications of the algorithm to extend its

application to mobile robots in maze environments.

7 Extensions to Maze Environments

In this section we explore the application of Curious Dr. MISFA to environments such

as a room-maze where each room has a time-varying audio or a video source (Fig-

ure 13). Therefore, each room represents a state si of Curious Dr. MISFA. In such

cases, the environment’s transition dynamics (see Section 3.2) are not similar to that of

a complete-graph model, i.e., the agent cannot switch between all the rooms without

passing through the other rooms. We present here design modifications to the algorithm
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Figure 13: An example room maze scenario.

that enable the agent to take deterministic actions (unlike the stochastic switch action) to

move to the state with the easiest encodable observation stream to learn an abstraction.

It is hard to provide theoretical guarantees to these modifications because they depend

on the unknown transition model of the maze. Instead, we present experimental results

later in the section to demonstrate the algorithm’s performance in such domains. The

following are the design modifications of the algorithm for maze environments:

Environment’s Transition Model: Curious Dr. MISFA uses a model-based LSPI

algorithm to learn the observation stream selection policy (see Section 3.2). Therefore,

the transition model for general maze environments needs to be learned a priori. It

can be learned either by using lookup tables in deterministic environments or using

Bayesian inference in stochastic environments. However, we provide the transition

model a priori to the algorithm in the experiments discussed later in this section.

Observation Stream Selection Policy: A drawback of using an ε-greedy strategy

over the stay-switch policy is that for a large number of observation streams in maze

environments, it takes a considerable amount of time to get to a desired state. This can

be improved by simultaneously learning another deterministic policy πd defined over

the same state space S but with a deterministic action-space (Ad = {ad1, ..., adn}). Let

P d denote the transition model of the internal environment for the action-space Ad.

When the agent shifts to a state si, ∀i ∈ {1, ..., n}, this implies that the agent took

an action adi , and vice-versa. The switch action stochastically selects an observation

stream, while the action adi ∈ Ad deterministically selects the observation stream xi.

The agent therefore maintains a pair of value functions, one for the stay-switch action

spaceA and the other for the deterministic action spaceAd. The agent chooses between
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the two policies π and πd probabilistically based on a decaying parameter ν (similar to

the ε-greedy strategy).

Reward Function: For maze environments, the desired state may not be reach-

able in few time-steps. In such cases the discount-factor γ may lead to suboptimal

behavior [Mahadevan, 1996]. To minimize this, average-reward reinforcement learning

approaches [Mahadevan, 1996] can be used. We instead use a simple trick by modifying

Eq. (14) as follows:

Rt(s) = 1{sl}(s), sl = arg max
si

(
R̃t(si, 0, si)

)
, s ∈ S (75)

Therefore, at any time t, the observation stream selection policy learned using this re-

ward function is a shortest path to get to the state corresponding to the maximum reward.

Basis Functions: We use linear function approximation methods to find approxi-

mate value functions for large discrete maze environments. The value function is repre-

sented as a linear combination of basis functions. The selection of basis functions plays

an important role in solving the problem. Krylov Basis Functions [KBFs; Petrik, 2007]

are reward-sensitive basis-vectors K, which are constructed by taking the product of

reward function R with geometric powers of transition matrix P of a policy:

K = {R,PR, P 2R, ...}. (76)

Proto-Value Basis Functions [PVFs; Mahadevan and Maggioni, 2007] are however

reward-insensitive basis-vectors, which are constructed by finding the eigenvectors of

the symmetric graph Laplacian matrix based on the neighborhood relationships among

the states. PVFs capture invariant subspaces (bottlenecks) of the model transition ma-

trix. However, they lead to poor approximations when the reward function is spiky,

because the basis vectors are smooth. While KBFs tend to work well for spiky re-

ward functions, they require costly re-computations of the basis functions whenever the

reward function changes. Augmented Krylov Basis Functions [AKBFs; Petrik, 2007]

combines the methods to take advantage of both their approximation properties. This

basis is constructed by augmenting a finite number of Krylov-basis and proto-value

basis vectors, followed by an iterative orthogonalization using Arnoldi iteration tech-

nique [Arnoldi, 1951]. We use AKBFs for evaluating the stay-switch observation stream

selection policy πt and the deterministic observation stream selection policy πdt .
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Figure 14: Maze Environment with Noisy Streams: See text for details. (Figures are

best viewed in color)

These design modifications together enable Curious Dr. MISFA to be applied to

maze environments with time-varying observation streams. Next, we present results of

experiments conducted in such environments.

7.1 Maze Environment with Noisy Streams

Here, we test the design modifications discussed above on a bounded 1D-chain maze

environment and in the presence of incompressible noisy streams as shown in Figure
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14(a). Each state corresponds to a room with an audio source (see Figure 13). Each

state has only two neighbors, except for the boundary states. Action switch shifts the

agent’s state to one of its 2 neighboring states uniformly randomly. States s1 and s7 are

associated with a white noise stream, and s3 and s5 are associated with two streams,

shown in Eq. (72) and Eq. (73), respectively. The rest of the states have no observation

streams (zero value). The 2D observation streams are expanded to 5 dimensions to

handle non-linearity in the input. Based on the Ω values, observation stream x1 is the

easiest stream to encode followed by x2 and then x3.

Experiment parameters: The values for τ , β, γ, α and the IncSFA-ROC parame-

ters are set to the same values as in Experiment 6.1. σ is set to 5. Action-space Ad is

equal to {ad1 = −1(Left), ad2 = 0(Home), ad3 = 1(Right)}. Left and Right actions shifts

the agent’s state (with probability 1) from si to si−1 and si+1 respectively, while Home

action makes the agent to remain in the same state. The initial ε and ν values are set to

ε = 1.1 and ν = 1.2, with a 0.999 decay multiplier for both. However, when ε < 0.9,

the decay multiplier is set to 0.992 to speed up the experiment. γd is set to 0.9.

The experiment is conducted for 20 trails with different random seed initializa-

tions. Figures 14(b)-(c) show plots of R̃t (see Eq. 75) over time for each trial and

Figures 14(d)-(e) show the average. The average R̃t values corresponding to the noise

are close to zero. Figures 14(f)-(g) show the average thresholded reward function over

time (see Eq. 75). The algorithm successfully converges to the optimal solution in all

the 20 trials avoiding the noisy streams. The two abstractions corresponding to the

observation streams x3 and x5 are learned sequentially.

7.2 Large Maze Environment with Duplicated Streams

Here, we evaluate the algorithm on a larger maze environment as shown in the Figure

15(a). The environment has 100 grid points. Each grid point topologically represents

a room (see Figure 13) with an arbitrarily associated audio stream such that, there are

in total 10 grid points each of x1 (Eq. (72)), x2 (Eq. (73)) and a random stream. The

remaining grid points are associated with an empty (zero) stream. The agent is unaware

of the audio stream distribution and can traverse along the grid points to observe sam-

ples from the associated time-varying audio streams. The objective here is to learn an
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Figure 15: Large Maze with Duplicated Streams: See text for details. (Figures are

best viewed in color)

abstraction corresponding to x1 first by moving into any of the grid points containing

x1, followed by an abstraction for x2. Since there are in total 100 observation streams,

Curious Dr. MISFA’s environment has 100 states (S = {s1, ..., s100}). Each state has
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only four neighbors (except for the boundary states). Action switch shifts the agent’s

state to one of its 4 neighboring states uniformly randomly.

Experiment parameters: Action-spaceAd is {ad1 = −2(North), ad2 = −1(South), ad3 =

0(Home), ad4 = 1(East), ad5 = 2(West)}. IncSFA-ROC parameters are set to the same

values as in Experiment 6.1. We use Augmented Krylov basis functions (see Section

7), with 10 Krylov bases, 30 LEM bases for computing π and 0 Krylov bases, 40 LEM

bases for computing πd. γd is set to 0.85. The values of the remaining algorithm pa-

rameters are set to the same values in the previous experiment (Section 7.1).

The agent begins by exploring the grid world using the policy described in Algo-

rithm 2. When ε is close to 1, it executes the stay-switch actions uniformly randomly.

The reward function is updated and the policies π and πd begin to converge. The opti-

mal stay-switch policy for learning module-1 returns the action stay in one or more of

the states (grid-points) that contain the oscillatory signal x1 and switch in all the other

states. As ε and ν decay, the agent begins to exploit the policy π initially and πd later

on. The converged policy πd enables the agent to get to the optimal state quickly, which

speeds up learning the corresponding abstraction. When ε ≈ 0, the agent stays in one

of the grid points (that contains x1) and a corresponding abstraction is learned. The

process repeats, the gating system prevents learning an abstraction corresponding to x1

again. Therefore, the states corresponding to x2 are most rewarding now and the agent

learns a second abstraction corresponding to it.

The experiment is conducted for 20 trails with different random initializations. Fig-

ures 14(b)-(c) show the plot of R̃t for each trial. Each red curve represents the maximum

reward of all the 10 states associated with the audio stream x1 for each trial. While the

green and the blue curves represent the same but for streams x2 and random stream re-

spectively. In 16 out of the 20 trials, an abstraction corresponding to the audio stream x1

(Eq. (72)) is learned first followed by audio stream x2 (Eq. (73)). Figure 14(d)-(e) show

the learned policies π and πd for a single trial. The arrows in the figure indicate the ac-

tions A = {stay, switch} and the 5 deterministic actions Ad = {ad1 = −2(North), ad2 =

−1(South), ad3 = 0(Home), ad4 = 1(East), ad5 = 2(West)}.

This experiment demonstrates that Curious Dr. MISFA can successfully be applied

to maze environments. The algorithm learns an abstraction while simultaneously devel-

oping a policy to get to the grid point with the easiest learnable observation stream.
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8 Discussion and Conclusion

This section discusses the related research carried out by others, current limitations

of the method and the future work that might address these limitations. To the best

of our knowledge, the learning problem introduced in this paper has not been tackled

with any of the current existing, practically implementable, intrinsically-motivated re-

inforcement learning methods, or anything else. We provided a theoretical analysis and

an empirical evaluation to justify that the method achieves the desired optimal perfor-

mance under the constraints mentioned in the paper. However, the following section

compares structurally how our method differs from some of the relevant prior research

work.

8.1 Related Work

Curious Dr. MISFA learns multiple feature abstractions from action sequences that are

specific (but not limited) to a few localized parts of the environment. This is closely

related to learning abstractions for options. The options framework (Sutton et al., 1999)

formalizes planning over temporally extended courses of actions (temporal abstrac-

tions) via the semi-Markov Decision Process (MDP). Each option is applicable over a

part of the environment, has its own subgoal(s), and has its own policy. Each option

has a set of initiation states (from which the option can be started), a policy for ac-

tion selection, and a termination probability upon each state. Konidaris et al. [2009,

2010] show how each option might be assigned with an abstraction from a library of

many sensorimotor abstractions. The abstractions have typically been hand-designed

and learning was assisted by human-demonstration. Without any external guidance,

Curious Dr. MISFA autonomously builds a compact library of abstractions that can be

used for options.

Mugan and Kuipers [2012] Qualitative Learner of Action and Perception system

is designed to learn simplified predictable knowledge, potentially useful for learning

behaviors from autonomous and/or curiosity-driven exploration (Mugan and Kuipers,

2012). It discretizes low-level sensorimotor experience through defining landmarks

in the variables and observing contingencies between landmarks. It builds predictive

models on this low-level experience, which it later uses to generate plans of action. It
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either selects its actions randomly (early) or such that it expects to make fast progress in

the performance of the predictive models (artificial curiosity). The sensory channels are

preprocessed so that the input variables, for example, track the positions of the objects in

the scene. A major difference between this system and ours is that Curious Dr. MISFA

can potentially operate upon the raw pixels directly [Kompella et al., 2015], instead of

assuming the existence of a low-level sensory model that can e.g., track the positions of

the objects in the scene. Through IncSFA, features emerge from raw visual processing,

and this feature development is tightly coupled with the curiosity-driven learning.

PowerPlay (Schmidhuber, 2013, Srivastava et al., 2013) can be viewed as a greedy

variant of the Formal Theory of Creativity. In PowerPlay, an increasingly general

problem solver is improved by searching for the easiest to solve, still not yet known,

task, while ensuring all previously solved tasks remain solved. PowerPlay, unlike most

online-learning algorithms has no problems with forgetting. Similar to PowerPlay, in

Curious Dr. MISFA when a new representation is learned well enough to be internally

predictable (low feature output estimator error), it is frozen and added to a long-term

memory storage, and therefore already learned representations are not lost. However,

neither PowerPlay (nor other intrinsically motivated reinforcement learning methods)

have been applied to high-dimensional video data.

8.2 Limitations and Future Work

In the following, we will briefly list the current limitations of the Curious Dr. MISFA

framework and insights for future work:

• Raw information processing. Curious Dr. MISFA is based on the IncSFA algo-

rithm that updates slow feature abstractions online directly from raw-inputs (see

Section 3.1), including high-dimensional image inputs [Kompella et al., 2015].

Slow features learned through IncSFA are linear. To extract higher non-linearities

in the inputs, hierarchical extensions of IncSFA (H-IncSFA) over an expanded in-

put in quadratic space [Luciw et al., 2012, Wiskott and Sejnowski, 2002] or the

recently proposed Deeply-Learned SFA [DL-SFA; Sun et al., 2014] may be used.

DL-SFA adopts the notion of 3D convolution and max-pooling to capture ab-

stract, structural and translational invariant features. As future work, we plan to
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combine such non-linear hierarchical structures to improve the quality of the slow

feature abstractions learned.

• Continuous model. Curious Dr. MISFA uses a ROC clustering algorithm that

learns a discrete model mapping the adaptive slow feature outputs with respect to

the user-signal observations u(t) (see Section 3.1). We plan to use a continuous

state predictor to avoid discretization of the slow feature outputs. This continuous

predictive model can help a subsequent reinforcement learner to quickly learn

continuous policies.

• Sensor fusion. And finally, we have only applied Curious Dr. MISFA on either

oscillatory streams or high-dimensional visual inputs from the onboard cameras

of an iCub humanoid robot [Luciw et al., 2013, Kompella et al., 2014, 2015].

As our future work, we plan to build slow features abstractions by using differ-

ent sensory modalities such as tactile and audio in addition to the visual inputs.

This should be straightforward addition to Curious Dr. MISFA, since IncSFA is

agnostic to the modality of the sensory information. The raw inputs of different

modalities can be concatenated as a single input and fed to the IncSFA algorithm,

without causing too much computational overhead (since IncSFA has a linear up-

date complexity [Kompella et al., 2012a]). Related work on combining sensory

modalities using SFA methods have shown to achieve good results [Höfer et al.,

2012].

8.3 Conclusion

We have presented an autonomous curiosity-driven modular incremental slow feature

learning algorithm that learns invariant slow feature abstractions from multiple time-

varying input observation streams, sequentially, in the order of increasing learning

difficulty. The method continually estimates the initially unknown learning difficulty

through intrinsic rewards generated by exploring the observation streams using a stay-

switch action selection mechanism. The architecture of the method includes (a) a

reinforcement-learner that generates policies to select an input stream based on the in-

trinsic rewards, (b) an adaptive IncSFA-ROC module that updates an abstraction based

on the incoming observations, and (c) a gating-system that prevents encoding inputs
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that have been previously encoded. We formalized the learning problem as an opti-

mization problem and presented a formal analysis to prove that the Curious Dr. MISFA

algorithm converges to the optimal-solution under a few mild conditions. Experimental

results show that the method successfully learns abstractions in the order of increasing

learning difficulty, for a variety of experimental settings.

With the growing success of the Slow Feature Analysis (SFA) among many prob-

lems and scenarios, this modular incremental version of SFA contributes to the field

of artificial intelligence by enabling skill development in curiosity-driven agents. In

other works (Kompella et al., 2012b, Luciw et al., 2013, Kompella et al., 2015) we have

shown results on how Curious Dr. MISFA enables an iCub robot to carry out real-time

intrinsically motivated interactions with the environment to uncover slow features from

the raw video inputs. In future work, Curious Dr. MISFA could be extended to enable

the iCub to learn increasingly complex slow-feature representations in more general

environments.
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