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Image-based Detection of Semi-transparent Objects

Abstract:
Most computer and robot vision algorithms, be it for object detection, recogni-

tion, or reconstruction, are designed for opaque objects. Non-opaque objects have

received less attention, although various special cases have been the subject of re-

search e�orts, especially the case of specular objects. The main objective of this

thesis is to provide a seminal work in the case of semi-transparent objects, i.e. ob-

jects that are transparent but also re�ect light, typically objects made of glass. They

are rather omnipresent in man-made environments (especially, windows and doors).

Detection of these objects provides vital information that can be used in a robot's

localization and path planning. Also, several other important applications are dis-

cussed in the report. In order to achieve the detection of semi-transparent objects

we developed a novel approach using a collective-reward based technique on an im-

age captured by an uncalibrated camera. We also present a robotic-vision version

of the approach in the form of a semi-transparent obstacle avoidance algorithm for

a wheeled mobile robot. Several experiments were conducted over several scenarios

to test the e�cacy of the algorithm.

Keywords: Object detection, semi transparent, transparency, obstacle avoid-

ance.
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Chapter 1

Introduction

Every opaque object has speci�c features which make it visually distinguishable

from the rest. On the other hand, an ideal transparent substance would have no

such features of its own, therefore making it visually impossible to recognize. Several

objects like glass do give us a perception of transparency by passing most of the light

through it and posing very few deterministic cues to the observer. Roughly speaking

in the context of object recognition, transparency can be de�ned as an inverse-

measure of the number of deterministic features speci�c to an object. So, a semi-

transparent object would have fewer distinguishable features compared to an opaque

object (Figure 1.1). In this work we discuss a collective-reward based approach for

detecting such semi-transparent objects from a single image by a computer-vision

system consisting of a camera. We also present a robotic-vision version of the

algorithm to solve several robotic applications like obstacle avoidance, etc.

In the following, we review some of the related research work that was carried

out in the area of transparency and its detection. Transparency has been a sub-

ject of research in the �elds of psychology, vision and graphics. Among the earlier

(a) (b)

(c) (d)

Figure 1.1: Figures show images containing semi-transparent objects. (a) Pair of

glasses. (b) A plastic-case (c) Glass with opaque objects (d) Water drop.
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researchers studying the phenomenon of transparency, gestalt psychologist Metelli

is credited for making important and in�uential contributions to the theory of per-

ceptual transparency [Singh 2002]. Perceptual transparency is the phenomenon of

seeing one surface behind another. Metelli's model of transparency was based on a

rotating episcotister, i.e. a rotating disk with re�ectance t and an open sector of

relative area α (Figure 1.2). When rotated in front of a bi-partite background whose

two halves have di�erent re�ectance-values a and b, it would lead to a percept of

transparent layer with a re�ectance p and q overlying the opaque background.

Figure 1.2: Figures illustrate Metelli's model of transparency using a rotating

episcotister.

The color mixing in the region where the episcotister rotates over the background

is given by Talbot's law:

p = αa+ (1− α)t (1.1)

q = αb+ (1− α)t (1.2)

Metelli derived two �qualitative constraints� for predicting the percept of trans-

parency and they are:

• Polarity constraint: sign(p− q) = sign(a− b).

• Magnitude constraint: |p− q| ≤ |a− b|.

Metelli's magnitude constraint was later found out by Singh and Ander-

son [Singh 2006] to be inadequate in predicting the percept of transparency. The

locus of transition between transparency and non-transparency was approximated

instead by a constraint based on Michelson contrast (i.e. p−q
p+q ≤

a−b
a+b).

Adelson and Anandan [Adelson 1990] used a linear model for the intensity of a

transparent surface to achieve relationships between the X junction at the bound-

ary of transparent objects. These relationships categorize the X junctions leading

to interpretations that support or oppose transparency. Figure 1.3 illustrates sev-

eral types of X junctions. Let p,q,r,s be the luminance values in the four regions

surrounding the X junction, as indicated in Figure 1.3(d). The vertical edge retains

the same sign in both halves of the X junction if p<q and r<s. Similarly, if p<r

and q<s, the horizontal edge retains the same sign in both halves of the X junction.
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Figure 1.3: Figures(a)-(c) illustrate di�erent types of X-junction. (a) Non-reversing

X-junction (b) Single-reversing X-junction (c) Double-reversing X-junction. The

conditions on luminance values shown in (d) are used to categorize the X-junction

as one among the three types.

This is called a "non-reversing" junction because both edges retain their sign (Figure

1.3(a)). Figure 1.3(b) shows another X junction where the vertical edge changes sign

and the horizontal edge retains its sign. This is called a "single-reversing" junction.

And when both the edges change their sign then it is called a "double-reversing"

junction. Non-reversing and single-reversing junctions support transparency and

double-reversing junction does not support transparency.

The perception of transparency has received relatively lesser attention in the

computer vision research community. Detection of transparent objects is a fairly

di�cult task as they do not have any distinguishable features of their own. Singh

and Huang [Singh 2003] discuss about separation of transparent overlays from the

background surfaces by making use of polarities of X junctions along the boundaries

of objects. Transparent overlays are generally formed because of the presence of a

transparent surface in front of an opaque object. Schechner et al. [Schechner 1998]

have used the concept of depth from focus along with reconstruction to separate

such overlays. Wexler et al. [Wexler 2002] have developed an approach for modeling

transparent objects without the need of any specialized calibration by making use

of multiple images of the same object over the same background with a relative

motion between them. Ben-Ezra and Nayar [Ben-Ezra 2003] developed a model-

based algorithm to recover the shape and pose of a transparent object in the scene

from motion. They made use of the fact that changing the viewpoint changes the

apparent background visible within the con�nes of a transparent object. Although,

this requires for the background to be far away behind the transparent object.

Hata et al. [Hata 1996] have proposed another approach in extracting the shape

of transparent objects using a genetic algorithm. A comparison is performed over

a real and a simulated image by tracing a slit light-line along an ordinary board

on which the transparent object is placed. The error evaluation is then used to

modify the model by making use of a genetic algorithm until the error falls below a

threshold.
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The main focus of the computer vision community remained on the problems

concerning the detection of overlays and the reconstruction of the 3D shape structure

of transparent surfaces. Relatively little work was carried out in the actual automatic

detection of transparent objects in a scene. McHenry and Forsyth [McHenry 2005]

used the edge information determined by a Canny edge detector to capture cues

relating to transparent objects across their boundaries. These edges were combined

using an active contour method to identify a single glass region. This method

was later extended by McHenry and Ponce [McHenry 2006] with a region-based

approach along with the edge information to classify regions to be transparent or

not. They proposed two measures called the discrepancy measure and the a�nity

measure. The a�nity measure provides an indication whether the regions belong to

the same material and the discrepancy measure is used to indicate how close a region

looks like a glass-covered region of the other. A region-based segmented image is

used as an input to the algorithm. One of the issues reported by the authors

is that initial segmentation may merge some parts of the transparent object into

background and this cannot be recovered later in the process. Transparent objects

with low refractive indices may face this issue. As the algorithm is dependent on the

edge cues for connecting regions, it might lead to problems if the object has weak

edges or if the background edges intersect the glass object. This is possible with

lower refractive transparent objects like a plastic sheet. It has been suggested that

an over segmented image would be preferred as an input to the system. An over-

segmented image with a noisy background containing lots of edges might make it

computationally intensive because the discrepancy measure is calculated for region

samples about edge snippets. But on the other hand considering fewer snippets

could be erroneous in a low resolution image.

In this thesis, we present an algorithm for the automatic detection of semi-

transparent objects using the information available from a single image. In this

regard we propose a method called the collective-reward based approach to achieve

the detection and localization of the object's position in an image. The underlying

principle behind this method is the fact that the pixels corresponding to a semi-

transparent object have features which are similar to the surrounding pixels due

(a) (b)

Figure 1.4: (a) Figure shows a sample image with a semi-transparent object. (b)

The �nal result of the algorithm.
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to refraction and re�ection of light on the object's surface. Figure 1.4(a) shows

an example image which when fed to the algorithm has the result as shown in the

Figure 1.4(b). The collective-reward based approach is then extended to �t onto a

robotic vision system to detect glass doors and transparent obstacles present in the

scene for a better improved mapping and navigation. It can also be used to detect

and avoid water or oil spills on the �oor. Several experimental results relating to the

approach and its robotic application were carried out in order to prove the e�cacy

of the algorithm.

The report is organized as follows. In Chapter 2, we discuss the feature-cues

used in the algorithm that are related to the transparent objects. The collective-

reward based approach is presented in-detail in the Chapter 3. It also covers a

description about how the feature-cues are used to generate rewards for classifying

the pixels. The algorithm is trained o�ine to set the algorithmic parameters which

are then �xed for generating the results. Chapter 4 discusses about the results of

the experiments conducted over several sets of images captured from a web cam and

also from the Internet. The collective-reward based approach is modi�ed to suit to

robotic applications of which obstacle-avoidance of transparent objects is discussed

in Chapter 5. Snapshots of videos taken from several experiments conducted on a

mobile robot are also presented. Finally, we conclude the report by providing some

insights on the various other applications of the algorithm and also discuss some of

our future work in Chapter 6.





Chapter 2

Feature-Cues

Contents

2.1 Highlights and Caustics . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Re�ections and Intensity . . . . . . . . . . . . . . . . . . . . . 9

2.5 Cross-Correlation Measure . . . . . . . . . . . . . . . . . . . . 10

This chapter presents a description of the features-cues used in our algorithm

that are usually present with semi-transparent objects. The following cues are quan-

ti�ed via feature-reward functions, details of which are later discussed in Chapter

3.

2.1 Highlights and Caustics

(a) (b) (c)

Figure 2.1: (a) Figure shows the presence of caustics on a semi-transparent object

(glass). (b) Figure shows the presence of highlights on a semi-transparent object

(plastic case), and Figure (c) shows the segmented highlight pixels.

Highlights are strongly illuminated regions in the image formed due to the spec-

ular nature of a surface. Transparent objects are usually highly specular, there-

fore the presence of highlights increases the probability of a possible transparent

material around. Transparent objects like glass are also known to be refractive

resulting in caustics which also serve as a cause for the highlights in the image

(Figure 2.1(a)). Several methods exist in the literature discussing the detection

of highlights [Klinker 1990]. It has been known from the literature that value
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and saturation quantities of the HSV color space [Ford 1998] could be used to

determine the pixels belonging to achromatic regions in the image. Highlights

are bright white pixels that can be found in an image using value > 75% and

saturation < 20% [Androutsos 1999]. Figure 2.1(b) shows a sample image of a

transparent object with highlights. The pixels corresponding to the highlights are

segmented out as shown in the Figure 2.1(b). Although highlights are a valuable

cue in detecting transparent objects, there is always a possibility that they could

belong to an opaque object or a white paper. In addition to that, they do not

carry much other information thereby making them points of high uncertainty. But

the presence of these points de�nitely increases the probability of the surrounding

non-highlight points to belong to a transparent object as they can be further tested

for other reward functions. After the detection of transparent points, the highlights

are then classi�ed as points belonging to transparent or opaque objects.

2.2 Color

(a) (b) (c)

Figure 2.2: (a) Figure shows an image containing a semi-transparent object. (b)

Its corresponding Cr color channel and (c) Cb color channel image.

A highly transparent object would produce almost negligible distortion in the

color of the background. On the other hand, semi-transparent objects like glass,

plastic, etc. generally have impurities and also due to the presence of specular

re�ections, the background color is slightly distorted. We made use of the Y CrCb

color model [Ford 1998] to encode the color information as the 'luma' (Y ) component

can be separated out making Cr and Cb components to robustly indicate the color

attribute invariant to intensity (Figure 2.2).

2.3 Saturation

Saturation serves as another valuable cue in detecting transparent objects. Trans-

parent objects have a slight blurring e�ect on the background. The pixels belonging

to these blurred regions tend to have less vivid colors than pixels corresponding

to the unblurred region [Liu 2008]. Therefore these pixels have relatively lower

saturation values (Figure 2.3).
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(a) (b)

Figure 2.3: (a) Figure shows an image containing a semi-transparent object and

(b) its corresponding saturation channel image. Semi-transparent objects tend to

lower the saturation values.

2.4 Re�ections and Intensity

(a) (b)

Figure 2.4: (a) Figure shows the specular re�ection of the side wall about the

surface of the semi-transparent object. (b) Figure shows a gray scale image of a

semi-transparent object present on a textured �oor. There is a slight reduction in

the contrast of the texture appearing on the object.

As previously discussed transparent objects are usually highly specular, the light

rays coming from the objects around could bounce o� the surface of the semi-

transparent object and reach the camera. Therefore, the apparent texture present on

the transparent objects may not necessarily be the same as that of the background.

Figure 2.4(a) shows an image containing a semi-transparent object. We can see the

re�ection of the white wall on the semi-transparent object.

Intensity plays a major role for backgrounds with texture. We made use

of Michelson's contrast constraint as it has been shown by Singh and Ander-

son [Singh 2002] that transparency lowers its value. Figure 2.4(b) shows a gray

scale image of a semi-transparent object. We can observe the slight reduction in the

contrast of the texture appearing on the semi-transparent object.
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2.5 Cross-Correlation Measure

Cross-correlation is a measure of how well two signals match with each other. A

small window is used as a template to be slided over a small rectangular region as

shown in the Figure 2.5. The window slides across the region and the normalized

cross-correlation is calculated at each point. The maximum and minimum of the

result is found and reported. Normalized cross-correlation values will be higher for

points that belong to similar regions. As glass produces a slight distortion e�ect

on the background, the measure will be relatively lower. On the other hand two

non-similar patches would report for an even lower measure. In order to reduce the

e�ect of noise and improve the result, Y CrCb color space channels of the image are

fed as an input.

Figure 2.5: Figure shows an illustration of how the cross-correlation measure is

determined in an image containing a transparent object.
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Collective-Reward Based
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Semi-transparent objects like glass, plastic, etc. not only transmit light but also

re�ect the light coming from the surrounding objects, typically from the foreground.

Therefore, the pixels corresponding to the semi-transparent objects have features

similar to that of the surrounding pixels. This is because these pixels actually contain

the distorted features of what lies behind the semi-transparent object [Murase 1992].

Figure 3.1(a) illustrates the transmitted and re�ected light coming from an object in

the background and the foreground respectively. Since from a single image we do not

have access to the actual features of the pixels behind the semi-transparent object,

we therefore use the surrounding pixels to judge whether a pixel belongs to a semi-

transparent object, an opaque object or a point of the background. Figures 3.1(b)

and 3.1(c) show two sample images with correspondences drawn between a point

inside and outside the semi-transparent object. As the boundary corresponding to

the semi-transparent object is not known, a random hypothetical region R is selected

in an image. Several connections are established between each point (pi) inside the

region and points (pe) outside the region. Each of these connections are tested with

the feature functions to generate a reward which is received at pi. A reward is a

decimal-point value ranging from 0 to 1. The reward will be high if pi belongs to a

semi-transparent object having features similar to pe and low if the point pi belongs
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(a) (b) (c)

Figure 3.1: (a) The �gure illustrates the contribution of features via refraction and

specular re�ection. Figures (b) and (c) illustrate the collective reward received via

several connections established (with good �tness values) between the points of a

semi-transparent object and the surrounding. Figures should be viewed in color.

to an opaque object or the background itself. In order to avoid rewards due to noisy

points in the image and to provide more emphasis on the strongly co-related points,

each connection is given an appropriate weight to indicate its �tness value. This

also accounts for the specularity feature of the glass. These weights are calculated

using support �tness functions, discussed in-detail in section 3.1.

Let RI and RE denote the region interior and exterior to R respectively. Let (Ii)

denote the reward (refer to section 3.3.2 for a detailed description about how the

rewards are calculated) received at each pixel belonging to RI . Let (I
j
e ) denote the

reward given by each of the pixels that belong to RE . A one-to-many relationship

is established between each point of RI to every point in RE . Let there be k such

connections, the reward at each point pi is given by the equation (3.1).

W
′
1I

i = W1I
1
e +W2I

2
e + ...+WkI

k
e ∀pi ∈ RI (3.1)

Where {W1,W2, ...,Wk} are the weights denoting the strength of each connection

(pi 7→ p1
e, pi 7→ p2

e, ..., pi 7→ pk
e), ∀pi ∈ RI . W

′
1 is a normalization factor equal to

(W1 + W2 + ... + Wk). The weight Wj , ∀j ∈ {1, ..., k} denotes the �tness value of

the jth connection. Let Ptr denote points corresponding to semi-transparent objects

in RI (Equation (3.2)). Let Popq denote all the points in RI that have features

di�erent from the features of points in RE (Equation (3.3)). These points belong to

the opaque objects and background textures that lie only in RI . We will henceforth

refer to these points as opaque points. Let Pbg denote points corresponding to the

background that lie in {RI ∪RE} (Equation (3.4)).

Ptr = {p | p ∈ {semi-transparent objects} ∩RI} (3.2)

Popq = {p | p ∈ {opaque objects or patches}, p ∩RE = φ} (3.3)

Pbg = {p | p ∈ {Ptotal \ (Ptr ∪ Popq)}} (3.4)

Let (Ptr|Pbg) denote all those points of semi-transparent objects with features sim-

ilar to the points in Pbg. Without any loss of generality all the points in RE are
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(a) (b)

Figure 3.2: (a) The �gure shows the regions corresponding to semi-transparent,

opaque and background points in the image. A hypothetical region R indicated

by the blue rectangle is used for the illustration. (b) The �gure shows a coarse

clustering output over the entire image based on color and intensity gradients.

considered as background. Let (Ptr|Popq) denote all those points of semi-transparent

objects with features similar to the points in Popq. As the opaque points are not

similar to the background, we have

(Popq|Pbg) = ∅ (3.5)

Therefore, the point-set corresponding to the semi-transparent objects in RI is given

by the Equation (3.6).

Ptr = (Ptr|Popq) ∪ (Ptr|Pbg) (3.6)

Figure 3.2(a) shows a sample image illustrating di�erent point sets (opaque points,

semi-transparent points and background points). Let Ptotal denote the set of all

points in the image. We have,

Ptotal = Popq ∪ (Ptr|Popq) ∪ (Ptr|Pbg) ∪ Pbg (3.7)

The problem now rami�es down to �nding sets (Ptr|Popq) and (Ptr|Pbg). Our

approach is to �rst segment the set Ptotal into three clusters (Pbg), (Ptr|Pbg) ,

(Popq ∪ (Ptr|Popq)) out of which the cluster T1 = (Ptr|Pbg) is extracted and the

cluster (Popq ∪ (Ptr|Popq)) is further processed to extract the cluster T2 = (Ptr|Popq).
The clusters T1 and T2 are reported as a �nal result.

To begin with, a coarse spatial clustering of the point set Ptotal is carried

out to separate similar regions based on color (Cr and Cb) and intensity gradi-

ents (Ix and Iy) (Figure 3.2(b)). The clustering is done using the K-means algo-

rithm [MacKay 2003]. The number of clusters is computed automatically based on

inter-cluster mean distances and other thresholds. Let C denote the index-set of

all the clusters. Let the clusters present in RI and RE be equal to CI and CE re-

spectively. These clusters are used to calculate the �tness values of the connections

made between points in RI and RE .
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3.1 Support Fitness Functions

3.1.1 Clusters Fitness Function

Figure 3.3: Clusters �tness function

Since a coarse clustering is carried out, the points on the semi-transparent object

would generally either belong to a cluster of the background, or a cluster that belongs

to opaque points, or a cluster of points corresponding to highlights (Figure 3.2(b)).

The reward received through a connection would be higher if points of the same

cluster are compared. On the contrary, since clustering is performed coarsely, there

are chances for the following possibilities:

• CI(pi) 6= CE(pe), µ(CI(pi)) ≈ µ(CE(pe))

• CI(pi) = CE(pe), µ(CI(pi))� (or �) µ(CE(pe))

where, µ(C) denotes the distance between the cluster gravity centers. The �rst

listed possibility occurs when the points of the semi-transparent objects that are

quite similar to the background fall into di�erent clusters. These connections with

non-equal cluster index should not be neglected. The second possibility occurs when

cluster indices are identical but the distance between the clusters is large. The �tness

value of this connection should be relatively lower. In order to account for these

possibilities a 2D Gaussian �tness function is used with cluster-index distance (cid)

on one axis and the mean-distance (cd) on the other axis. The cluster-index distance

(cid) is de�ned as the di�erence in the positions of clusters-indices in a sorted cluster-

index set. Sorting was done based on mean-distances between the cluster centers.

The combination of index and µ provides separability among closely similar clusters

but also provides connectivity among clusters with wide mean separation. The

Clusters �tness function as shown in the Figure 3.3 is given by:

WCj = e
−( cid

2

2σ2
c

+ cd2

2σ2
d

)
(3.8)

Where, σc is the standard deviation with respect to cluster-index distance and σd

is the standard deviation with respect to absolute mean-di�erence.
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3.1.2 Distance Fitness Function

Euclidean distance forms an important �tness function determining the strength

of a connection. The chance of �nding a similarity in features between a semi-

transparent object and the background is higher if they are closely situated. On the

contrary, in situations where a semi-transparent object is placed to the side of an

opaque object, there are chances that the distance function might localize on the

connections between the points of semi-transparent object and the opaque object

producing a poor result. Introspecting at another possibility, we have, if the region

R is large, a point selected at its bottom-left part will generally have low correlation

with the exterior points closer to the top-right corner of R. On the other hand, if

the region R is small then the point will have correlations with all the surrounding

exterior points. In addition to the above possibilities we also have the e�ects of

perspective, distance blur, focus and radial distortion in the camera. In order to

account for these possibilities we made use of the �tness function (3.9). Where, D

is equal to the euclidean distance ||pi − pe|| , σ1 = 2
3min(Rwidth,Rheight) and

σ2 = 2
3max(Rwidth,Rheight), where Rwidth and Rheight are the dimensions of

the region R.

WDj = 0.7e
− D2

2σ2
1 + 0.3e

− D2

2σ2
2 (3.9)

The resultant �tness function for each link is given by equation (3.10)

Wj = WCj ∗WDj (3.10)

3.2 Post Processing Functions

3.2.1 Nearest Neighbor Transparency (NNT)

The detection process may leave some gaps in the semi-transparent object. Some

of these gaps can be �lled with the help of the NNT function. There is a high

probability for a point to be semi-transparent if the points surrounding it are semi-

transparent. So at each point, the weighted average of reward values in the neigh-

borhood is found and added to the existing value. NNT can also help in removing

noise points. By making the reward values negative that fall below a threshold,

the average could turn out negative if there are more neighboring non-transparent

points, thereby reducing the reward value.

3.2.2 Edge Cues

Semi-transparent objects do show up edge cues because of higher refractive indices,

grounded edges, caustics or opaque boundaries. A logical conjunction (And) of the

total reward function is performed with an edge map, thereby retaining only those

edges that belong to transparencies.
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3.3 Total Reward and Classi�cation

3.3.1 O�ine Training

An o�ine training was carried out over a set of images to construct the reward

functions. A rectangular region of a semi-transparent object is extracted manually

from the image. Let TI represent the set of all points that belong to the region. Two

more di�erent rectangular regions of the similar background are extracted manually

from the image. Let TE1 and TE2 denote the sets of all points that belong to the two

regions. For each point pb taken from the set TI a di�erence set T
t
D(pb) is generated

as shown in equation (3.11).

T t
D(pb) = {|f(pa)− f(pb)|,∀pa ∈ TE1} (3.11)

Where f(x) denotes the corresponding feature-value at x. A histogram Ht of the

di�erence set is generated and averaged over each point pb in TI .

Ht(pb) = Hist{T t
D(pb)} (3.12)

Ht
Avg =

1
ℵ(TI)

∑
∀pb∈TI

Ht(pb) (3.13)

where,ℵ(TI) represents cardinality of the set TI . Similarly, a histogram Ho is gen-

erated and averaged over each point pb in TE2.

T o
D(pb) = {|f(pa)− f(pb)|, ∀pa ∈ TE1} (3.14)

Ho(pb) = Hist{T o
D(pb)} (3.15)

Ho
Avg =

1
ℵ(TE2)

∑
∀pb∈TE2

Ho(pb) (3.16)

Let (0, G) denote the domain of the histograms generated. The reward function Rw

is found using equation (3.19).

Nt(l) = Ht
Avg(l) (3.17)

No(l) = Ho
Avg(l) (3.18)

Rw(l) =
Nt(l)

Nt(l) +No(l)
,∀l ∈ (0, G) (3.19)

The reward function Rw is found for Cr, Cb and saturation channels using the above

approach with a slight modi�cation for saturation, where a positive di�erence-set

is generated using the equation (3.20). This is done in order to account for the

fact that saturation values of semi-transparent objects are lower compared to the

background.

TD(pb) = {|f(pa)− f(pb)| H[pa − pb],∀pa ∈ TE1} (3.20)

Where, H[n] denotes a Heaviside step function.

The training is performed using several such rectangular regions of di�erent semi-

transparent objects and di�erent backgrounds and a function (Rw+
i ) is generated.



3.3. Total Reward and Classi�cation 17

The training is also done with negative samples by considering regions taken from

distinguishable opaque objects giving a reward function (Rw−i ). The average reward

function generated is given by (3.21).

Rwavg =
Rw+

1 +Rw+
2 + ...−Rw−k −Rw

−
k+1 − ...−Rw

−
N

N
(3.21)

3.3.2 Reward Functions

(a) (b)

(c) (d)

Figure 3.4: The �gures show graphs of (a) Highlights reward function (b)

Saturation-reward function (c) Cb-reward function and (d) Cr-reward function.

For each point inside the region R, k best points outside the region are found

using the support �tness functions as discussed in the previous sections. For each of

these connections let pi denote the point inside and let pe denote the point outside

the region R. The following are the feature-reward functions used to generate a

reward for each of these connections based on the cues discussed in the Chapter 2.

3.3.2.1 Highlights and Caustics

The reward function for these points is given by the Gaussian function as shown

in the Figure 3.4(a), with euclidean distance between the point and the closest

highlight-point as an argument. After the detection of semi-transparent points,

the highlights which were rewarded low are now classi�ed as points belonging to
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semi-transparent or opaque objects based on the euclidean distance from a closest

semi-transparent point using the same reward function.

3.3.2.2 Saturation

The pixels corresponding to the semi-transparent objects have relatively lower

saturation values compared to the pixels corresponding to the background. The

di�erence (Sat(pe) − Sat(pi)) is used as an argument that is passed to the reward

function. We had carried out o�ine training to determine the reward function as

shown in the Figure 3.4(b).

3.3.2.3 Color

We made use of the Y CrCb color model to encode the color information. This

is because the 'luma' (Y ) component can be separated out making Cr and Cb

components to robustly indicate the color attribute invariant to intensity. The

absolute di�erence between the median of a 3x3 neighborhood centered at pi and

pe is used as an argument that is passed to the reward function. Rewards for each

color component Cr and Cb are found from the individual reward functions and

the product of both the rewards is reported. We had carried out o�ine training

to determine the Cr and Cb reward functions as shown in the Figures 3.4(c) and

3.4(d) respectively.

3.3.2.4 Intensity

The maximum and minimum intensities are calculated in a KxK neighborhood

centered at pi and pe. These values are used to calculate Michelson's contrast.

Michelson's contrast is de�ned as

C =
Imax − Imin

Imax + Imin
(3.22)

The di�erence in the average intensities calculated in the neighborhood centered at

pi and pe, is checked if it falls below a threshold T and a reward is generated using

the reward-function given by

Reward =

{
Cpe−Cpi
Cpe+Cpi

: Cpe ≥ Cpi > 0, |(Iavg
pe − I

avg
pi )| < T

0 : otherwise

3.3.2.5 Cross-Correlation Measure

A small window of size KxK centered at pi is used as a template to be slided over

a rectangular region MxM centered at po with (M > K). The window slides across

the region and the normalized cross-correlation is calculated at each point. The

maximum and minimum of the result are found and reported. Normalized cross-

correlation values will be higher for points that belong to similar regions. Thresholds

used were found based on an o�ine training over several images. In order to reduce
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the e�ect of noise and improve the result, Y CrCb color space channels of the image

are fed as an input.

3.3.3 Classi�cation

The reward value corresponding to each connection Ij
e , j ∈ (1, ..., k) (Refer to the

Equation (3.1)) connecting a point pi ∈ Ri to a point pe ∈ RE is found from the

feature functions:

Ij
e = Rw(g(pi, pe)) (3.23)

Ii =
1
W

′
1

(
W1I

1
e +W2I

2
e + ...+WkI

k
e

)
(3.24)

Where, g(pi, pe) denotes the functional argument passed to each of the feature-

reward functions (highlights, Cr, Cb, Saturation, Intensity and Cross-correlation).

The reward value Ii received at the point pi ∈ RI through all the k connections is

given by equation (3.24) and the weights Wj are computed as shown in Section 3.1.

The total reward fm(pi) is then calculated as a combination of individual feature

reward values. As individual feature functions are weak classi�ers, an ensemble of

classi�ers is formed to generate a strong classi�er. The total reward is modi�ed by

the post-processing functions to get a normalized result.

3.4 Intra-Region Clustering

(a) (b)

Figure 3.5: Figure (a) illustrates the regions relating to the semi-transparent object

that have features similar to the background and the opaque patch (object). (b)

The �nal outcome on carrying out the collective-reward based approach using the

region R.

Summarizing the process carried out till now, we perform a coarse clustering

of all the pixels in the image into several clusters based on color and intensity

gradients. These points are then divided into two regions based on whether they

lie interior or exterior to the hypothetical region R. A point node taken from the

inner-region is compared with points taken from the outer-region. Each of these
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connections are analyzed for their strengths through which rewards are collected by

the inner points. Finally, the total reward is calculated after passing through the

post-processing functions.

On performing a comparison between the points inside and outside the region

R , the set (Ptr|Pbg), i.e. the points of semi-transparent objects that have features

similar to the background receive high reward while the points Pbg (background

points), Popq (opaque points) and (Ptr|Popq) (semi-transparent points that have

features similar to the opaque points) receive a low or zero reward. The result

is thresholded to extract (Ptr|Pbg). But in the process the points (Ptr|Popq) that

also belong to semi-transparent objects are lost because they do not have features

similar to Pbg. Figure 3.5(a) shows an illustration with a region R encompassing a

semi-transparent object and an opaque object. The regions of the semi-transparent

object are labeled accordingly. Figure 3.5(b) shows the result of the collective-reward

based approach with the region R. Only the portion (Ptr|Pbg) is segmented and the

rest of the semi-transparent object is �ltered out. In order to recover this portion

we need to perform an additional operation called the intra-region clustering.

(a) (b)

(c) (d)

Figure 3.6: (a) Figure shows an opaque patch and a semi-transparent object in-

front of it. It also shows the new hypothetical region R′. (b) The �nal outcome on

carrying out the collective-reward based approach using the region R′. (c) Intra-

region clustering is carried out once again to �nd a new region R′′ to improve the

�nal outcome. (d) The normalized appended result found after carrying out the

collective-reward based approach using the regions R, R′ and R′′.
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We �rst �nd out all those color clusters that belong only to RI .

Popq∪(Ptr|Popq) = {pi|P (CI(pi)) ∩ P (CE(pe)) = D,ℵ(D) < δ, ∀pi ∈ RI , ∀pe ∈ RE}
(3.25)

Where P (CI(pi)) and P (CE(pe)) denote the set of all points that belong to the

cluster-index of the point pi and pe respectively. δ is a small number to account for

those objects whose majority of the portion lies inside the region but may have some

points in the exterior. Figure 3.6(a) shows the extracted region Popq ∪ (Ptr|Popq).
A Mahalanobis distance set for each of the color clusters is generated between each

point that is extracted using the equation (3.25) and the gravity center of the de-

tected transparent points within a close range. The median of the distance set is

used to partition the point-set (Popq ∪ (Ptr|Popq)) into two clusters. Figure 3.6(a)

shows the partition R′ which separates the region into two clusters. The cluster that

is closer to the detected portion of semi-transparent object is denoted as interior of

the new region R′ and the rest is exterior. The collective-reward based approach

is carried out between these clusters to extract most of the points that belong to

(Ptr|Popq). Figure 3.6(b) shows the segmented portion (Ptr|Popq). Although using

the region R′ we may not be able to extract all the points corresponding to the

semi-transparent object. In the Figure 3.6(b) we can see that a small portion of

the semi-transparent object on the bottom-right corner is lost. This is because the

new region R′ did not encompass the whole of the semi-transparent object. To get

a better result, the intra-region clustering can be performed another time to get a

new region R′′ which will encompass the remaining portion of the semi-transparent

object (Figure 3.6(c)). Finally, the result is normalized and combined to give a �nal

result Ptr as shown in the Figure 3.6(d).

3.5 Automatic Region Selection

Region selection is an important factor which a�ects the outcome of the algorithm.

As the comparisons are made between the points inside and outside the region, a

single region may not be su�cient to locate the semi-transparent objects in the

entire image. We could either have multiple regions scanned across the image or

a hierarchical set of regions with varied dimensions. Several such methods exist

which can be used depending on the requirements of the end user. One approach we

followed to automate the result is by using a two step region selection. The algorithm

is executed initially using a large region encompassing most of the image as shown

in the Figures 3.7(a) and 3.7(b). The resulting reward for the points situated at

the central part of the region may be erroneous as the distance between the point

comparison is large (Figure 3.7(c)). In order to improve the result, we use the

outcome of the �rst iteration as a region for the second iteration. This will re-check

all the points that have been detected as semi-transparent points by executing the

algorithm with the close-by points in the second iteration. Therefore, the erroneous

points get eliminated as shown in the �gure 3.7(d). If the computational time is not

a constraint, the algorithm can be run via this two step method for several large
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(a) (b)

(c) (d)

Figure 3.7: (a) Figure shows a sample image with a semi-transparent object. (b) A

large region denoted by red-points is selected for the �rst iteration. (c) The outcome

of the �rst iteration with erroneous result for the points at the central part of the

region. (d) The outcome of the second iteration after using the output of the �rst

iteration as the region R itself.

regions in the image to get a best possible result.
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Experimental Results

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Figures (a)-(f) show a few semi-transparent objects and the corre-

sponding detection results. The images should be viewed in color. For all results we

used the same parameters that were learnt via o�ine training and a two-step region

selection method.

In this chapter we will present some of the results of several experiments con-

ducted to test our algorithm over several images taken from a webcam and also from

the Internet. We made use of a Logitech web camera to capture images of resolution

equal to 640x480. One of the main reasons behind using the webcam is to extend

the approach to a robotics platform accounting for the e�ects of perspective and

noise due to distance, focus and radial blur.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4.2: Figures (a)-(o) show a few semi-transparent objects and the corre-

sponding detection results using the two-step region selection method. Second col-

umn shows the result of the �rst iteration and third column shows the result of the

second iteration. The images should be viewed in color.
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To make the algorithm computationally tractable, the point nodes considered are

sampled as 1 node to 10 pixels in the image. The exterior points used for comparison

are restricted to the 40 best connections found out by the �tness values. To train

the reward functions we collected 35 sample-regions of transparent objects and the

corresponding close-by regions of the background. Figures 4.1-4.2 show results of

a few images containing semi-transparent objects over di�erent backgrounds. As

discussed in the section 3.5, we evaluated our approach using the two-step region

selection. The algorithm is executed initially using a large region encompassing

most of the image. We then use the outcome of the �rst iteration as a region R

for the second iteration. Figures 4.2 show results of the two-step region selection

method. The second column shows the result of the �rst iteration of the algorithm.

We can see that the �rst-iteration results are noisy at the central part of the image.

This is due to the fact that the comparisons for the central points are made with

distant points outside the region. The third column of the Figure 4.2 shows the

result of the second iteration. We can clearly see that the precision of the result

has improved. Figures 4.2(a)-(c) and 4.2(d)-(f) shows experiments conducted using

a thin plastic cup and a refractive glass respectively. Figure 4.2(g) contains a semi-

transparent object made of glass along with two opaque objects. The algorithm

detects the glass as shown in the Figure 4.2(i). We can notice that there are few

false positives detected on the left. This is because the algorithm had picked up

the points belonging to the dim-shadow and classi�ed them as points belonging to

semi-transparent regions. This could be explained by the fact that light shadows

also appear as transparencies over the background as they are very similar and

hold most features of a semi-transparent object. From a single image it remains a

challenging problem to �lter out the dim-shadows from the result. Although, as the

variation in the shadow is gradual, a nearby-point comparisons will eliminate most

part of it. Figures 4.2(j) shows another scenario with a transparent sheet placed on

sheets of di�erent color. The algorithm successfully detects the transparent sheet

in the �rst iteration itself. We can see a small undetected patch on the top portion

of the transparent sheet. On performing the second iteration, many exterior points

are taken from this undetected patch. Therefore we see that the more points of

the transparent sheet get �ltered due to the point-point comparisons within the

transparent sheet. Figures 4.2(m)-(o) show the result of another experiment with

two transparent objects placed next to each other.

To quantify the results, we carefully marked the boundaries of the semi-

transparent objects in an image and performed experiments by measuring the pre-

cision and the recall rate. We collected 50 images with di�erent objects and back-

ground scenarios. As the �nal result of the algorithm is probabilistic, the precision

rate is calculated taking this into account. True positives are measured as the num-

ber of detected points, with the corresponding probabilities, lying within the bound-

ary. Similarly, false positives are measured as the number of detected points along

with the probabilities lying outside the marked boundary. We achieved a precision

rate of 77.19% and a recall rate of 65.84%. We consider the rates to be pretty good

due to the fact that detection of the transparent objects is a fairly di�cult prob-
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(a) (b) (c)

Figure 4.3: Figure (a) shows a sample image with a semi-transparent object. (b)

The result of the algorithm after the �rst iteration. (C) The result of the algorithm

after the second iteration.

(a) (b)

(c) (d)

Figure 4.4: Figure (a) shows a sample image with a larger region R used for the

detection. (b) The corresponding result of the algorithm. (c) The sample image

with a smaller region R used for detection. (d) The corresponding result of the

algorithm.

lem to solve. Our precision is better than the precision reported by McHenry and

Ponce [McHenry 2006], i.e. 77.03%. We requested the author of [McHenry 2006] to

provide us with the image dataset they have used, but we did not get any reply. So,

we made our own dataset with images containing several object scenarios and some

of which may fail to get detected by the algorithm presented in [McHenry 2006]. As

our algorithm is based on points, the information at each point is independent from

the structure of the other points situated around. Therefore, if a semi-transparent

object has a few opaque regions on it, the corresponding opaque points will get

�ltered out by the algorithm. This is one of the reasons for the recorded recall rate
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(a) (b) (c)

Figure 4.5: Figure (a) shows a sample image with several objects. (b) The result of

the algorithm with a lower threshold. (C) The result of the algorithm with a higher

threshold.

(a) (b)

(c) (d)

Figure 4.6: Figures (a)-(d) show a few semi-transparent objects and the corre-

sponding detection results. The images should be viewed in color.

to be slightly lower. This in a way acts as an advantage to �lter out opaque parts

of the transparent objects.

Figures 4.3 show the result of another experiment conducted on a semi-

transparent object. We see that some points of the glass are not detected. This

is due to the presence of a slightly darker shadow behind the glass. As mentioned

earlier, we used the two-step region selection to evaluate our approach. Although

it works quite well, it may not be the optimal method to get the best precision and

recall rates. Figure 4.4(a) shows a sample image of a semi-transparent object with

a region R selected by the red points. We see that the result (Figure 4.4(b)) is quite

noisy. On the other hand when a region R as shown is the Figure 4.4(c) is used, we

get a much better output (Figure 4.4(d)). Therefore, we �nd that the 2-step region



28 Chapter 4. Experimental Results

(a) (b)

(c) (d)

Figure 4.7: Figures (a)-(b) show an example of a false detection by the algorithm.

Figures (c)-(d) show an example of a miss-detection of the semi-transparent object

present in the image.

selection may not be the optimal solution for all cases. We will look into this aspect

as a future improvement to the algorithm.

Figure 4.5(a) shows an image with several types of objects. We can �nd in

Figure 4.5(b) that the semi-transparent glass on the left and the transparent region

of the glass bottle on the right are detected with a good recall rate but with several

false positives. As the result is probabilistic, on increasing the threshold, points with

lower probability are �ltered out and we �nd the result to be much better than earlier

(Figure 4.5(c)). Figures 4.6 show results of a few more experiments conducted on

semi-transparent objects. Figures 4.6(a) shows a thin plastic bottle placed in front

of an opaque object. This is an example where intra-region clustering takes place.

Similarly, a glass placed in front of the obstacle is also detected as shown in Figures

4.6(c)-(d). We can observe from both the results that a small patch on the top right

of the image is falsely detected as semi-transparent. This is due to fact that the

patch is similar to the background and could be considered as its distorted form.

And, as the algorithm is point-based, the patch gets detected as a semi-transparent

object. Although we considered these as false positives while quantifying the results,

it may entirely not be a disadvantage to pick out such patches. One such situation

which would produce a very similar patch is an oil or water spill on the table. As

a conclusion, the e�ectiveness of the algorithm lies in detecting any media that

creates a percept of transparency. Figures 4.7(a)-(b) show another example of a

false detection where the patch as discussed earlier is aided by the white-plastic

close to it which got detected as highlights in the image. Figures 4.7(c)-(d) show an

example of a complete miss-detection of the semi-transparent object in the image.
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Figure 5.1: A navigating robot with semi-transparent obstacles in its path.

Obstacle avoidance forms the primary yet a challenging task in mobile robot

navigation. With the increasing usage of objects made of glass, plastic etc., it

becomes necessarily important to detect this class of objects too while building a

robotic navigation system. Figure 5.1 shows a scenario where the robot has two

semi-transparent obstacles on its path. In addition, water and oil spills on the �oor

are also some of the important examples that fall under the class. A few of the major

constraints when it comes to robotic vision algorithms are the computational time

and system cost i.e., the algorithm has to run in real-time with limited resources.

The approach discussed so far in the previous chapters for detecting semi-transparent

objects, although being e�cient, is time consuming. In this chapter we discuss

modi�cations made to the approach to reduce the computational time with a slight

compromise on the accuracy of the result.

5.1 Modi�ed Collective-Reward Based Approach

In the collective-reward based approach discussed in the previous chapters, for every

point inside the hypothetical region R, k best points outside the region are deter-
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mined using the support �tness functions. These k connections are used to generate

appropriate rewards determined by the feature-reward functions. The rewards col-

lected from all the k connections are weighted with their respective �tness values

and the resulting total average-reward is found. So, we see that in-order to deter-

mine the best k points, we have to calculate the �tness values for each connection

made between a point inside and a point outside the region R. To get a general

notion about the computations involved, let us consider a region R of dimension

200x200 in a 640x480 image. The number of all possible connections is equal to

200 ∗ 200 ∗ (640 ∗ 480 − 200 ∗ 200) = 1.0688x1010. For each of these connections a

�tness-value has to be computed which takes a total processing time in the order of

minutes when run on a Pentium IV machine. To make it computationally tractable

the point nodes considered in the algorithm are sampled as 1 node to 10 pixels in the

image. Therefore, for a 640x480 image we have 20∗20∗(64∗48−20∗20) = 1.0688x106

connections. The computational time after determining the �tness values on a Pen-

tium IV machine was found out to be in the order of a second. Adding on this the

time required to run the feature reward functions and the rest of the code takes

around tens of seconds to execute. But in a robotics system, the complete execution

should ideally take less than a second to make it reactive in real-time.

We see from the above discussion that most of the processor time is spent in �nd-

ing out the best k connections for every point inside the region R. The main motive

behind �nding out the best connections is to perform a good comparison between

the points inside and outside the region. In order to improve the computational

speed we resorted for the k points selection based on random-distribution modeled

using the clusters �tness function as discussed in the Chapter 3. All the point-nodes

are stacked based on the cluster they fall into. The distribution model is generated

for each cluster using the cluster �tness function. This model determines how many

points (of the k points) have to be selected from each of the cluster stacks. The

k exterior points for each interior point are found by collecting the corresponding

number of points randomly from each cluster stack. This ensures that each interior

point has more connections with the points of the same cluster and lesser for slightly

di�erent clusters and even lesser with the points of largely di�erent clusters. Because

points in an individual cluster stack are selected uniformly randomly, their spatial

positions in the image could be distributed anywhere in the cluster. As the corre-

lations are much better for the points that are close, we made use of the rejection

sampling in order to limit the random selection to closer distances. The mask for the

rejection sampling for each interior point pi is given by a rectangle with dimensions

equal to the region R and centered at the point (pi.x, pi.y + 40), where pi.x is the

x-coordinate and pi.y is the y-coordinate of the interior point pi. An o�set of 40
is selected so as to avoid the distortion due to the perspective blur by taking more

points in the front. Figure 5.2(a) shows an image with a semi-transparent object

placed on an opaque object. The blue rectangle is the hypothetical region R and

the green rectangle is the mask for the rejection sampling. The points belonging to

the same cluster are shown by the same color in the �gure. We can see that the

interior point which is highlighted by a red circular boundary belongs to the cluster
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(a) (b)

(c) (d)

Figure 5.2: Figures (a)-(b) illustrate the selection of k exterior-points based on

random-distribution modeled using clusters �tness function. Blue rectangle denotes

the region R and green rectangle denotes the rejection sampling mask. The interior

point pi is highlighted by a red boundary for visualization. The color of a point indi-

cates the cluster it belongs to. (a) Interior point belongs to green cluster, therefore

majority of the exterior points selected are from green cluster (background). (b)

Interior point belongs to blue cluster, therefore majority of the exterior points se-

lected are from blue cluster (opaque object) and few from the green cluster. Figures

(c)-(d) illustrate the rejection sampling mask selection.

similar to that of the �oor. Therefore we �nd that the majority of the exterior points

selected are of the same color and only few points are selected from the cluster be-

longing to the opaque object which is indicated by blue color. Figure 5.2(b) shows

a similar image with a di�erent interior point pi. The highlighted interior point now

belongs to the cluster of the opaque object, therefore the majority of the exterior

points selected are from the opaque object and only few are from the background.

Figures 5.2(c) and 5.2(d) illustrate the random selection of the exterior points based

on the rejection sampling with respect to the mask (green rectangle). In the Figure

5.2(c) the interior point which is at the top left has the mask situated such that the

majority of the points taken are close to it. And in Figure 5.2(d) the mask is at a

di�erent location collecting points on the right side of the region R.

The above method of �nding k points has de�nitely reduced the computational

overhead of calculating �tness values from a number 1.0688x106 to just k ∗20∗20 =
400k for a region R with dimensions 200x200, where k is around 10 − 50. As the
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(a) (b)

(c) (d)

Figure 5.3: (a) Figure shows a sample image with a semi-transparent object. (b)

A rectangular region denoted by red points is selected. (c) The outcome of coarse

clustering, with a lower point-node sampling ratio inside the region R. (d) k exterior-

points selected for each interior point using the rejection mask. The points inside

the region R are highlighted by red boundary for the sake of visualization. The

color of the points indicate the cluster it belongs to.

main objective of the robot is to detect and approximately locate the object in the

image, we may relax on the actual boundary and shape of the body and detect it

as a blob. So we sampled the point nodes inside the region R as 1 node to 20 pixels

and the point nodes outside the region R is left the same as earlier, i.e., 1 node to

10 pixels. It is important to have a higher sampling rate outside than inside. Figure

5.3(a) shows a sample image with a semi-transparent object. Figure 5.3(b) shows

the sampled point nodes, the points colored red are interior points and the points

colored green are exterior points of the region R selected in the the image. Red

points are sampled 1-20 node-pixels and green points are sampled 1-10 node-pixels.

The coarse clustering output of the image is shown in the Figure 5.3(c). Figure

5.3(d) shows the random selection of the points outside the region. We can see that

the points are concentrated within a rectangular region by rejection sampling.

The next important task is the selection of the hypothetical region R. The

main objective behind its selection is to check for the presence of semi-transparent

objects in the entire image and also approximately localize the object's position in

the image. The region selected has to be scanned across the image to detect semi-

transparent objects in the entire image. For the localization of the object's position
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(a) (b)

(c) (d)

Figure 5.4: (a) Figure illustrates an image containing a semi-transparent object with

an optimal sized region R. The region is shaded because the detection ratio crossed

the threshold. (b) Figure illustrates the case when R is too large with a possible

miss-detection and also leads to a large object localization error in the image. (c)

Figure illustrates the case when R is too small. Possible miss-detection due to inter-

transparent point comparisons. (d) Figure shows the advantage of random sampling

over the deterministic approach for the region R as shown.

in the image, we note down all those regions where the ratio (detection-ratio) of the

detected transparent points to the total number of points in the region is greater

than 0.25. Figure 5.4(a) shows an illustration of a semi-transparent object and a

region selected. The region is shown highlighted as the detection ratio has crossed

the threshold of 0.25. Figure 5.4(b) shows an illustration with a larger region used

for the detection. For this region there is a chance that the detection ratio might

not cross the threshold resulting in a miss detection. It may also be ine�ective in

localizing the position of the objects in the image. Although a larger region will work

well for larger semi-transparent objects as this will avoid the comparison between

points within the transparent object. Figure 5.4(c) shows a similar illustration with

a smaller region used for the detection. The interior part of an obstacle will not

get detected as the comparisons are made between the points of the same object

as shown in the �gure 5.4(c). Therefore a region which is not too small or not too

large is selected for the detection. We used a region of area equal to 1
12 Image-

area. It is also interesting to note that the random-selection approach has a slight

advantage over the deterministic approach used in the Chapter 3 for the detection
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of inner regions of semi-transparent objects using a region as shown in the Figure

5.4(d). The deterministic approach would take the best points surrounding the

region which turn out to be the closest points in the example shown in the �gure.

Therefore, the comparisons between the points of the semi-transparent object will

be made resulting in a zero reward leading to a miss detection. But, with the

random-selection approach, the points are randomly distributed about the region

and therefore there is a better chance of detecting at least a few points inside the

region meeting the threshold for the detection ratio. Once the object's position in

the image is localized we make use of a heuristic closed loop turn maneuver algorithm

for the robot to avoid the detected obstacles.

5.2 Experimental Results

(a) (b)

(c) (d)

Figure 5.5: Figures (a)-(d) show a few semi-transparent objects and the corre-

sponding detection results. The location of the object in the image is found as the

highlighted rectangular regions in which the detection ratio has crossed the thresh-

old.

In this section, we will present some of the experimental results conducted using

the modi�ed collective-reward based approach. We also carried out several exper-

iments on a mobile robotic platform and tested the obstacle avoidance algorithm

using the same approach. Figures 5.5 show the algorithmic response for the corre-

sponding sample image. We can see in the Figure 5.5(b) that the semi-transparent

object is detected and localized in the image using rectangular blue regions. A total

of 12 regions are used for a single image and when the detection ratio crosses the

threshold, the corresponding region gets highlighted as shown in the Figures 5.5(b)

and (d).

Figure 5.6 shows the outputs of both the native approach and the modi�ed one

compared with each other. The native approach is more precise as expected than

the modi�ed approach. On the contrary the modi�ed approach is much faster. The
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(a) (b) (c)

Figure 5.6: Figures (a)-(c) show a comparison between the outputs of both the

native approach and the modi�ed approach of the algorithm. (a) Sample input

image (b) Result of the modi�ed approach (c) Result of the native approach

(a) (b)

(c) (d)

Figure 5.7: Figures (a)-(d) show a few semi-transparent objects and the corre-

sponding detection results. Figure (b) shows that the algorithm only detects semi-

transparent objects.

execution time for both the algorithms is found out to be equal to 10.274 seconds

for the native approach and 1.671 seconds for the modi�ed approach. Therefore

the modi�ed approach is approximately 6-7 times faster than the native approach.

Figure 5.7(a) shows another input image with a semi-transparent object along with

an opaque object. The result (Figure 5.7(b)) shows that only the semi-transparent

object is detected. Figures 5.7(c)-(d) show another example-pair with a di�erent

object in the scene. We used a simple avoidance maneuver algorithm. The number

of highlighted rectangular regions are counted on each half of the screen to determine

the turn direction. The turn-trigger signal to the robot is generated as soon as a

region corresponding to the bottom-most row gets highlighted. For example, in the

Figure 5.7(d), we can see that 4 rectangular regions are highlighted with 3 in the

middle row and 1 in the bottom row. Therefore, the robot receives a control signal

to turn right. Figures 5.8 and 5.9 show snapshots taken from a video of the robot

while performing the obstacle avoidance with semi-transparent obstacles on its path.
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: Figures (a)-(f) show snapshots taken from a video of the robot perform-

ing obstacle avoidance using the modi�ed collective-reward based approach. The

robot moves towards the obstacle on the right and then avoids it when a bottom

rectangle region gets highlighted as shown in the �gure (d).

(a) (b) (c)

(d) (e) (f)

Figure 5.9: Figures (a)-(f) show snapshots taken from a video of the robot per-

forming obstacle avoidance using the modi�ed collective-reward based approach. (b)

The robot detects the obstacle on the right. (c) It turns left and moves towards the

obstacle on the left. (d) The bottom-left rectangular region gets highlighted, it then

turns right. (e)-(f) The robot passes through the space between the two obstacles.



Chapter 6

Conclusions and Future Work

We proposed a new approach to detect the presence of transparencies in an image

using the collection of rewards via support �tness functions. This approach makes

use of the dependency between the points belonging to the transparent object and

the points that are situated around. This accounts for both the refracted background

and re�ected foreground about the semi-transparent object. The method uses a

hypothetical region to determine the transparent objects inside it. The hypothetical

region can either be manually selected by the user or can be optimally automated.

A two-step region selection method was discussed in this regard. An optimal region-

selection method forms one of the immediate goals of future work. The algorithm

is point-based and the detection at each point is independent from the structure of

other detected transparent points of the object (except for the immediate neighbors

which are used in the Nearest Neighbor Transparency post-processing function, refer

to Chapter 3). A better result may be achieved by combining the information

regarding the structure of the detected points. We submitted the above collective-

reward based approach for the detection of semi-transparent objects to the British

Machine Vision Conference, 2009 (BMVC'09).

The native algorithm was modi�ed to suit to robotic applications of which obsta-

cle avoidance was discussed and experimented in the work leading to the thesis. We

look forward to carry out several other important applications such as transparent

door detection that helps in localization and mapping of the robot looking through a

glass door. Obstacle avoidance along with the localization helps the robot to safely

navigate along the corridors made of glass without colliding. The collective-reward

based approach could well be used to detect other kinds of transparent media like

dim shadows, water-spill or any material that creates a percept of transparency.





Bibliography

[Adelson 1990] Edward H. Adelson and P. An. Ordinal characteristics of trans-

parency. In in Proc. AAAI workshop on Qualitative Vision, pages 77�81,

1990. 2

[Androutsos 1999] D. Androutsos, K. N. Plataniotis and A. N. Venetsanopoulos. A

novel vector-based approach to color image retrieval using a vector angular-

based distance measure. Comput. Vis. Image Underst., vol. 75, no. 1-2, pages

46�58, 1999. 8

[Ben-Ezra 2003] Moshe Ben-Ezra and Shree K. Nayar. What Does Motion Reveal

About Transparency? Computer Vision, IEEE International Conference on,

vol. 2, page 1025, 2003. 3

[Ford 1998] Adrian Ford and Alan Roberts. Colour space conversions, 1998. 8

[Hata 1996] S. Hata, Y. Saitoh, S. Kumamura and K. Kaida. Shape Extraction of

Transparent Object Using Genetic Algorithm. Pattern Recognition, Interna-

tional Conference on, vol. 4, page 684, 1996. 3

[Klinker 1990] Gudrun J. Klinker, Steven A. Shafer and Takeo Kanade. A physical

approach to color image understanding. Int. J. Comput. Vision, vol. 4, no. 1,

pages 7�38, 1990. 7

[Liu 2008] Renting Liu, Zhaorong Li and Jiaya Jia. Image partial blur detection and

classi�cation. In Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on, pages 1�8, 2008. 8

[MacKay 2003] David MacKay. Chapter 20. An Example Inference Task: Cluster-

ing, 2003. 13

[McHenry 2005] Kenton McHenry, Jean Ponce and David Forsyth. Finding Glass.

Computer Vision and Pattern Recognition, IEEE Computer Society Confer-

ence on, vol. 2, pages 973�979, 2005. 4

[McHenry 2006] Kenton McHenry and Jean Ponce. A Geodesic Active Contour

Framework for Finding Glass. Computer Vision and Pattern Recognition,

IEEE Computer Society Conference on, vol. 1, pages 1038�1044, 2006. 4, 26

[Murase 1992] Hiroshi Murase. Surface shape reconstruction of an undulating trans-

parent object. pages 213�217, 1992. 11

[Schechner 1998] Yoav Y. Schechner, Nahum Kiryati and Ronen Basri. Separation

of transparent layers using focus. In Proc. ICCV, pages 1061�1066, 1998. 3



40 Bibliography

[Singh 2002] Manish Singh and Barton L. Anderson. Toward a perceptual theory of

transparency. Psychological Review, vol. 109, pages 492�519, 2002. 2, 9

[Singh 2003] Manish Singh and Xiaolei Huang. Computing Layered Surface Rep-

resentations: An Algorithm for Detecting and Separating Transparent Over-

lays. Computer Vision and Pattern Recognition, IEEE Computer Society

Conference on, vol. 2, page 11, 2003. 3

[Singh 2006] Manish Singh and Barton L. Anderson. Photometric determinants of

perceived transparency. Vision Research, vol. 46, pages 879�894, 2006. 2

[Wexler 2002] Yonatan Wexler, Andrew. W. Fitzgibbon and Andrew. Zisserman.

Image-based environment matting. In EGRW '02: Proceedings of the 13th

Eurographics workshop on Rendering, pages 279�290, Aire-la-Ville, Switzer-

land, Switzerland, 2002. Eurographics Association. 3


	Introduction
	Feature-Cues
	Highlights and Caustics
	Color
	Saturation
	Reflections and Intensity
	Cross-Correlation Measure

	Collective-Reward Based Approach
	Support Fitness Functions
	Clusters Fitness Function
	Distance Fitness Function

	Post Processing Functions
	Nearest Neighbor Transparency (NNT)
	Edge Cues

	Total Reward and Classification
	Offline Training
	Reward Functions
	Classification

	Intra-Region Clustering
	Automatic Region Selection

	Experimental Results
	Semi-Transparent Obstacle Avoidance for a Mobile Robot
	Modified Collective-Reward Based Approach
	Experimental Results

	Conclusions and Future Work
	Bibliography

