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Abstract

We introduce here an incremental version of Slow Feature Analysis (IncSFA), combin-

ing Candid Covariance-Free Incremental Principal Components Analysis (CCIPCA)

and Covariance-Free Incremental Minor Components Analysis (CIMCA). IncSFA’s

feature updating complexity is linear with respect to the input dimensionality, while

batch SFA’s (BSFA) updating complexity is cubic. IncSFA does not need to store, or

even compute, any covariance matrices. The drawback to IncSFA is data-efficiency:

it does not use each data point as effectively as BSFA. But IncSFA allows SFA to

be tractably applied, with just a few parameters, directly on high-dimensional input

streams (e.g., visual input of an autonomous agent), while BSFA has to resort to hierar-

chical receptive-field based architectures when the input dimension is too high. Further,

IncSFA’s updates have simple Hebbian and anti-Hebbian forms, extending the biolog-

ical plausibility of SFA. Experimental results show IncSFA learns the same set of fea-

tures as BSFA and can handle a few cases where BSFA fails.



1 Introduction

Slow feature analysis (SFA; Wiskott and Sejnowski (2002); Wiskott et al. (2011)) is

an unsupervised learning technique that extracts features from an input stream with

the objective that the feature responses must change over time, but should change as

slowly as possible. A temporal stability objective has been used in some other unsuper-

vised learning techniques (Hinton, 1989; Földiák, 1991; Mitchison, 1991; Schmidhuber,

1992a; Bergstra and Bengio, 2009). SFA is different: the slow features are the lowest

order eigenvectors of an eigensystem based on the covariance matrix of input deriva-

tive measurements. The eigensystem formulation guarantees that its solution methods

reliably converge to a best solution, avoiding entirely the issue of local minima. SFA

has shown success in many problems and scenarios — extraction of driving forces of a

dynamical system (Wiskott, 2003), nonlinear blind source separation (Sprekeler et al.,

2010), as a preprocessor for reinforcement learning (Legenstein et al., 2010; Kompella

et al., 2011b), and learning of place-cells, head-direction cells, grid-cells, and spatial

view cells from high-dimensional visual input (Franzius et al., 2007): such representa-

tions also exist in biological agents (O’Keefe and Dostrovsky, 1971; Taube et al., 1990;

Rolls, 1999; Hafting et al., 2005).

A typical SFA implementation occurs in several stages: the data must all be col-

lected, processed (non-linearly expanded, outliers removed, etc.), whitened, the covari-

ance matrix of the derivative measurements constructed, its eigenvectors are solved and

these eigenvectors, in reverse order, are the slowest features. We present here Incre-

mental Slow Feature Analysis (IncSFA; Kompella et al. (2011a)), which interleaves

all the stages so that the slow features can be updated after each derivative measure-

ment. A few earlier techniques with temporal continuity objective were incremental as

well (Hinton, 1989; Bergstra and Bengio, 2009), but IncSFA follows the SFA formula-

tion and can track solutions that would be uncovered by batch SFA (BSFA), over which

it has the following advantages:

• Adaptation to Changing Input Statistics. In the BSFA paradigm, new data

cannot be used to modify already learned slow features. If input statistics change,

IncSFA can adapt existing features without outside intervention, while BSFA has

to discard previous features to process the new data.
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• Computational Efficiency. BSFA techniques rely upon batch Principal Compo-

nent Analysis (PCA; Jolliffe (1986)). For input observations in a I-dimensional

space, the computational complexity of PCA using the Jacobi method (Forsythe

and Henrici, 1958) is of the order O(I3). IncSFA’s updating complexity scales

linearly with dimensionality (O(I)), thus it has an advantage when the input di-

mension is large.

• Space Complexity. First, IncSFA can discard each observation immediately after

an update. Second, we note that IncSFA uses covariance-free techniques, where

the data covariance matrices never need to be computed, even in passing. In a

covariance-free technique, the features are updated directly from the new data.

The I(I + 1)/2 parameters in the covariance matrix do not have to be estimated.

• Simplicity. For extracting features from high-dimensional image sequences, IncSFA

presents a simpler solution method than the alternate technique of deep receptive-

field based BSFA networks. By simpler, we mean that IncSFA has just a handful

of parameters, instead of the multitude of parameters associated with the deep

nets.

• Reduced Sensitivity to Outliers. Outlier observations in a dataset can cause

problems for BSFA, as these outliers can corrupt the slow features. In some

cases, a feature may even become sensitive to an outlier. In a typical batch im-

plementation, each observation has the same amount of influence on the features.

In IncSFA, the influence of a single observation fades as newer observations are

experienced. The learning rate implicitly controls this forgetting factor. Different

learning rate settings can lead to different features — features that emerge from

a high learning rate setting are biased to detect slowly-changing phenomena that

occur with more regularity than if a lower learning rate were to be used.

• Biological Plausibility. IncSFA adds further biological plausibility to SFA. SFA

itself has been linked to biological systems due to the results in deriving place

cell, grid cells, etc., but it is difficult to see how BSFA could be realized in

the brain. IncSFA’s updates can be described in incremental Hebbian and anti-

Hebbian forms (discussed in detail in Sec. 5.4).
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The disadvantage of IncSFA is that BSFA is better in terms of data efficiency —

more input samples are needed for learning as compared to BSFA.

The remainder of this paper is organized as follows. Section 2 reviews SFA and its

batch solution. Section 3 walks through the new incremental SFA. Section 4 has some

illustrative experiments and results. Section 5 discusses supplementary issues, includ-

ing convergence, parameter setting and biological plausibility. Section 6 concludes the

paper.

2 Background

2.1 SFA: Intuition
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Figure 1: A toy example to explain what a slow feature is. (A): Consider a zero-mean

input signal that spatially resembles white noise. Input points (the black dots) are drawn

from within the gray circle area. Linear spatial feature extractors (such as PCA) will

not prefer any direction over any other (since, for PCA, the variance in all directions is

the same). (B): If we recode the data in terms of how it changes between subsequent

time instants, certain directions can be more informative than others. Here, the arrows

show a short representative sequence of input. All difference vectors (not just the four

shown) create the space shown in (C). In this space, the first principal component gives

the (linear) direction of quickest change. The second — the minor component — gives

the direction of slowest change (the slowest feature).
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In this section, we briefly review SFA in an intuitive sense and present its formu-

lation and batch solution method (those who are already familiar with SFA can skip

this section). SFA is a form of unsupervised learning (UL). Like some other feature

extraction techniques, it searches for a set of mappings gi from data x ∈ RI to output

components yi = gi(x) that are separate from each other in some sense and express

information that is in some sense relevant. In SFA the features are separated via mutual

decorrelation of their outputs, while relevance is defined as minimal but nonzero change

over time (slowness). Ordering the functions g1, g2, ..., gI by slowness, we can discard

all but the J < I slowest, getting rid of irrelevant information such as quickly changing

noise assumed to be useless. See Fig. 1 for a visual example of the meaning of a slow

feature.

SFA-based UL learns instantaneous features from sequential data (Hinton, 1989;

Wiskott and Sejnowski, 2002; Doersch et al.). Relevance cannot be uncovered without

taking time into account, but once it is known, each input frame can be encoded on

its own. Due to this, SFA differs from both 1. many well-known unsupervised feature

extractors (Abut, 1990; Jolliffe, 1986; Comon, 1994; Lee and Seung, 1999; Kohonen,

2001; Hinton, 2002), which ignore dynamics, and 2. Other UL systems that both learn

and apply features to sequences (Schmidhuber, 1992a,c,b; Lindstädt, 1993; Klapper-

Rybicka et al., 2001; Jenkins and Matarić, 2004; Lee et al., 2010; Gisslen et al., 2011),

thus assuming that the state of the system itself can depend on past information.

The compact relevant encodings uncovered by SFA reduce the search space for

downstream goal-directed learning procedures (Schmidhuber, 1999; Barlow, 2001), es-

pecially reinforcement learning. As an example, consider a robot sensing with an on-

board camera. Reinforcement learning algorithms applied directly to pixels can be quite

inefficient due to the size of the search space. Slow features can encode each image into

a small set of useful state variables, and the robot can use these few state variables to

quickly develop useful control policies. The state variables from SFA are approxima-

tions of low-order eigenvectors of the graph Laplacian (Sprekeler, 2011), i.e., proto-

value functions (Mahadevan and Maggioni, 2007). This is why they are typically more

useful as features in reinforcement learning instead of other types of features, such as

principal components.
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2.2 SFA: Formulation

SFA’s optimization problem (Wiskott and Sejnowski, 2002; Franzius et al., 2007) is

formally written as follows:

Given an I-dimensional sequential input signal x(t) = [x1(t), ..., xI(t)]
T , find a

set of J instantaneous real-valued functions g(x) = [g1(x), ..., gJ(x)]T , which to-

gether generate a J-dimensional output signal y(t) = [y1(t), ..., yJ(t)]T with yj(t) :=

gj(x(t)), such that for each j ∈ {1, ..., J}

∆j := ∆(yj) := 〈ẏ2j 〉 is minimal (1)

under the constraints

〈yj〉 = 0 (zero mean), (2)

〈y2j 〉 = 1 (unit variance), (3)

∀i < j : 〈yiyj〉 = 0 (decorrelation and order), (4)

with 〈·〉 and ẏ indicating temporal averaging and the derivative of y, respectively.

The problem is to find instantaneous functions gj that generate different output sig-

nals varying as slowly as possible. The constraints (2) and (3) together avoid a trivial

constant output solution. The decorrelation constraint (4) ensures that different func-

tions gj do not code for the same features.

2.3 Batch SFA

Solving this learning problem involves variational calculus optimization. But it is sim-

plified through an eigenvector approach. If the gj are linear combinations of a finite set

of nonlinear functions h, then

yj(t) = gj(x(t)) = wT
j h(x(t)) = wT

j z(t), (5)

and the SFA problem now becomes to find weight vectors wj to minimize the rate of

change of the output variables,

∆(yj) = 〈ẏ2j 〉 = wT
j 〈żżT 〉 wj, (6)
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subject to the constraints (2-4). The slow feature learning problem has become linear

on the derivative signal ż.

If the functions of h are chosen such that z has unit covariance matrix and zero

mean, the three constraints will be fulfilled if and only if the weight vectors wj are

orthonormal. Eq. 6 will be minimized, and the orthonormal constraint satisfied, with

the set of J normed eigenvectors of 〈żżT 〉 with the J smallest eigenvalues (for any

J ≤ I).

The BSFA technique implements this solution by using batch principal component

analysis (PCA) (Jolliffe, 1986) twice. Referring back to Eq. 6, to select h appropriately,

a well-known process called whitening (or sphering), is used to map x to a z with zero

mean and identity covariance matrix, thus decorrelating signal components and scal-

ing them so that there is unit variance along each principal component (PC) direction.

Whitening serves as a bandwidth normalization, so that slowness can truly be measured

(slower change will not simply be due to a low variance direction). Whitening requires

the PCs of the input signal (PCA #1). The orthonormal basis that minimizes the rate of

output change are the minor components – principal components with smallest eigen-

values – in the derivative space. So, another PCA (#2) on ż yields the slow features

(eigenvectors) and their order (via eigenvalues).

3 Incremental SFA

Like BSFA, IncSFA employs the eigenvector tactic, but uses incremental algorithms for

the two required PCAs. Therefore, IncSFA can update existing slow feature estimates

on any amount of new data, even a single data point x(t).

To replace PCA #1, IncSFA needs to incrementally whiten the input x. We use the

state-of-the-art Candid Covariance-Free Incremental (CCI) PCA (Weng et al., 2003).

CCIPCA incrementally updates both the eigenvectors and eigenvalues necessary for

whitening, and does not keep an estimate of the covariance matrix. It has been proven

to converge to the true PCs (Zhang and Weng, 2001). CCIPCA is optionally used

to reduce dimensionality at this intermediate stage, by only computing the K highest

order eigenvectors.

Except for low-dimensional derivative signals ż, CCIPCA cannot replace PCA #2.
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It will take a long time to converge to the slow features, since they correspond to the

least significant components. Minor Components Analysis (MCA) (Oja, 1992) incre-

mentally extracts principal components, but with a reversed preference: it finds it easiest

to extract the components with the smallest eigenvalues. We use a modified version of

Peng’s low complexity MCA updating rule (Peng et al., 2007). Peng proved its con-

vergence even for constant learning rates—good for open-ended learning. MCA with

sequential addition (Chen et al., 2001; Peng and Yi, 2006) will extract multiple slow

features in parallel. In IncSFA, this method is modified to be covariance-free.

A high-level formulation of IncSFA is

(W(t+ 1),V(t+ 1)) = IncSFA(W(t),V(t),x(t), θ(t)), (7)

where W = (w1, ...,wJ) is the matrix of existing slow feature vector estimates for J

slow features, where each feature is a column vector in the matrix, V = (v1, ...,vK) is

the matrix of K principal component vector estimates used to construct the whitening

matrix and for dimensionality reduction, x(t) ∈ RI is the input observation, and θ

contains parameters about setting learning rates, which we will discuss later. In general

K < I and J < K.

Next, we’ll walk through the components of the algorithm.

3.1 Principal Components for Whitening

Given zero-mean data u = x − E[x], a PC is a normed eigenvector v∗
i of the data

covariance matrix E[uuT ]. Eigenvalue λ∗i is the variance of the samples along v∗
i . By

definition, an eigenvector and eigenvalue satisfy

E[uuT ]v∗
i = λ∗iv

∗
i , (8)

The set of eigenvectors are orthonormal, and ordered such that λ∗1 ≥ λ∗2 ≥ ... ≥ λ∗K .

The whitening matrix is generated by multiplying the matrix of principal component

length-one eigenvectors V∗ by the diagonal matrix D∗, where component d̂i,i =
1√
λi

∗ .

After whitening via z(t) = D∗V∗Tu(t), the data will be normalized in scale and

decorrelated, as seen by the fact that the covariance matrix will be the identity matrix:

E[zzT ] = I .
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The procedure to generate a whitening matrix is outlined in Algorithm 1. We note

that, via CCIPCA, the magnitudes of the eigenvector estimates are the eigenvalue esti-

mates.
Algorithm 1: CONSTRUCTWHITENINGMATRIX(V)

1 V̂←
(

v1

‖v1‖
, ...,

vK
‖vK‖

)
//I ×K matrix

2 D← 0 //K ×K matrix

3 for i← 1 to K do

4 Di,i = 1/
√
‖vi‖

5 end

6 S← V̂D //I ×K matrix

7 return S

3.2 CCIPCA Updating

CCIPCA updates estimates of eigenvalues and eigenvectors from each sample. For

inputs ui, the first PC is the expectation of the normalized response-weighted inputs.

Eq 8 can be rewritten as

λ∗i v∗
i = E [(ui · v∗

i ) ui] , (9)

The corresponding incremental updating equation, where λ∗i v∗
i is estimated by

vi(t), is

vi(t) = (1− ηPCA) vi(t− 1) + ηPCA
[
ui(t) · vi(t− 1)

‖vi(t− 1)‖
ui(t)

]
. (10)

where 0 < ηPCA < 1 is the learning rate. In other words, both the eigenvector and

eigenvalue of the first PC of ui can be found through the sample mean-type updating in

Eq. 9. The estimate of the eigenvalue is given by λi = ‖vi(t)‖. Using both a learning

rate ηPCA and retention rate (1 − ηPCA) automatically makes this algorithm invariant

to the magnitude of the input vectors.
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3.3 Lower-Order Principal Components

Any component i > 1 not only must satisfy Eq. 8 but must also be orthogonal to

the higher-order components. The residual method (Kreyszig, 1988; Sanger, 1989)

generates observations in a complementary space so that lower-order eigenvectors can

be found by the update rule of Eq. 10.

Denote ui(t) as the observation for component i. When i = 1, u1(t) = u(t). When

i > 1, ui is a residual vector, which has the “energy” of u(t) from the higher-order

components removed. Solving for the first PC in this residual space solves for the i-th

component overall. To create a residual vector, ui is projected onto vi to get the energy

of ui that vi is responsible for. Then, the energy-weighted vi is subtracted from ui to

obtain ui+1:

ui+1(t) = ui(t)−
(

uTi (t)
vi(t)

‖vi(t)‖

)
vi(t)

‖vi(t)‖
. (11)

Together, Eq. 10 and Eq. 11 constitute the CCIPCA technique described in Algo-

rithm 2.
Algorithm 2: CCIPCA-UPDATE(V, K,u, η)

//Candid Covariance-Free Incremental PCA

1 u1← u

2 for i← 1 to K do

//Principal component update

3 vi← (1− η) vi + η

[
ui · vi
‖vi‖

ui

]
//Residual

4 ui+1 = ui −
(

uTi
vi
‖vi‖

)
vi
‖vi‖

5 end

6 return V

3.4 MCA Updating

After using CCIPCA components to generate an approximately whitened signal z, the

derivative is approximated by (for example) ż(t) = z(t) − z(t − 1). In this derivative

space, the minor components on ż are the slow features.
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To find the minor component, Peng’s MCA (Peng et al., 2007) is used, the updating

equation of which is

wi(t) = 1.5wi(t− 1)− ηMCA Ci wi(t− 1) (12)

− ηMCA [wT
i (t− 1)wi(t− 1)] wi(t− 1),

where, for the first minor component, C1 = ż(t)żT (t).

For “lower-order” minor components, the sequential addition technique (Chen et al.,

2001) shifts each observation into a space where the minor component of the current

space will be the first PC, and all other PCs are reduced in order by one. Sequential

addition allows IncSFA to extract more than one slow feature in parallel. Sequential

addition updates the matrix Ci, ∀i > 1 as follows:

Ci(t) = Ci−1(t) + γ(t)
(
wi−1(t)w

T
i−1(t)

)
/
(
wT
i−1(t)wi−1(t)

)
(13)

Note Eq. 13 introduces parameter γ, which must be larger than the largest eigen-

value of E[ż(t)żT (t)]. To automatically set γ, we compute the greatest eigenvalue of

the derivative signal through another CCIPCA rule to update only the first PC. Then, let

γ = λ1(t) + ε for small ε.

3.5 Covariance-Free MCA

We can avoid the potentially costly outer products via the same trick that made CCIPCA

covariance-free: (żżT ) wi = (ż ·wi)ż. Considering only the first slow feature for now,

Eq. 12 can be re-written (switching to arrow notation from now on for clarity) as:

w1 ← 1.5w1 − ηMCA ż [żT wi]− ηMCA [wT
i wi] wi, (14)

←
(
1.5− ηMCA ‖w1‖2

)
w1 − ηMCA (ż ·w1) ż,

as shown in Sec. 5.4.

When dealing with nonstationary input, as we do in IncSFA due to the simultane-

ously learning CCIPCA components, it is acceptable1 to normalize the magnitude of the

1Peng: personal communication.
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slow feature vectors: wi ← wi/‖wi‖. Normalization at least ensures non-divergence

(see Section 5.1). If we normalize, Eq. 14 can be rewritten in an even simpler form with

retention rate and learning rate,

w1 ← (1− ηMCA)w1 − ηMCA(ż ·w1) ż, (15)

w1 ← w1/‖w1‖. (16)

Now, for all other slow features i > 1, the update can be written so sequential

addition shows itself to be a Gram-Schmidt procedure.

wi ← (1− ηMCA)wi − ηMCA

(ż ·wi) ż + γ
i−1∑
j

(wj ·wi)wj

 . (17)

The covariance-free MCA is outlined in algorithm 3.
Algorithm 3: CIMCA-UPDATE(W, J, ż, γ, η)

//Covariance-Free Incremental MCA

1 l1← 0

2 for i← 1 to J do

//Minor component update

3 wi← (1− η)wi − η [(ż ·wi) ż + li] .

//Normalize

4 wi← wi/‖wi‖.

//Lateral competition from ‘‘lower’’ components

5 li+1← γ
∑i
j(wj ·wi)wj

6 end

7 return W

Now, we can introduce the overall framework of IncSFA, seen in Algorithm 4.
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Algorithm 4: INCSFA(J,K, θ)

//Autonomously learn J slow features from samples x ∈ RI

// V : Matrix of K ≤ I principal component column vectors

// W : Matrix of J ≤ K slow feature column vectors

// vγ : First PC in whitened difference space

// x̄ : Mean of x

1 {V,W,vγ, x̄} ← INITIALIZE ()

2 for t← 1 to∞ do

3 x̆← SENSE(worldstate)

4 x← EXPAND (x̆) //non-linear expansion

5 {ηPCAt , ηMCA
t } ← LEARNINGRATESCHEDULE (θ, t)

6 x̄← (1− ηPCAt ) x̄ +ηPCAt x //Update mean

7 u← (x− x̄) //Centering

//Candid Covariance-Free Incremental PCA

8 V← CCIPCA-UPDATE (V, K,u, ηPCAt )

9 S← CONSTRUCTWHITENINGMATRIX (V)

10 If t > 1 then (zprev ← zcurr) //Store prev.

11 zcurr ← STu //Whitening and dim. reduction

12 if t > 1 then

13 ż← (zcurr − zprev) //Approx. derivative

//To learn sequential addition parameter γ

14 vγ ← CCIPCA-UPDATE (vγ, 1, ż, ηPCAt )

15 γ ← vγ/‖vγ‖

//Covariance-free Incremental MCA

16 W← CIMCA-UPDATE (W, J, ż, γ, ηMCA
t )

17 end

18 y← zTcurrW //Slow feature output

19 end

A few items to note on the algorithm:
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3.1 Intermediate dimensionality reduction

Since often only a relatively small number of principal components of x are needed to

explain most of the variance in the data, the other components do not even have to be es-

timated. With IncSFA, dimensionality reduction can be done during PC estimation, and

no time needs to be wasted on computing insignificant lower-order PCs. The whitening

output dimension K must be set by hand2. However, some prior problem knowledge

seems necessary: the insignificant lower-order PCs may contain data corresponding to

the slowest varying signal in the input. It would be unwise to remove them in this case,

since discarding these might eliminate an important slow feature.

3.2 On complexity

From the algorithm, it can be seen that IncSFA complexity with respect to input dimen-

sion is O(I).

With respect to theK eigenvectors after the CCIPCA step, and J slow feature eigen-

vectors, every IncSFA update is of complexity O(K + J2). The quadratic complexity

on J is due to the Gram-Schmidt procedure in the CIMCA algorithm. CCIPCA uses the

residual method, which has linear complexity. However, we expect J < K and K < I ,

so the quadratic complexity on J should not hurt much.

3.3 Parameters

There are just a handful. One must choose K and J and set a learning rate schedule.

We provide some discussion on learning rates in Sec. 5.2.

4 Experiments and Results

Experiments were done either using Python (based on the MDP toolbox (T. Zito and

Berkes, 2008)) or Matlab3.

2One might set K such that 95% of the estimated total data variance is kept, for

example.
3Python code is available at www.idsia.ch/˜kompella/codes/incsfa.

html. Matlab code is available at www.idsia.ch/˜luciw/incsfa.html
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4.1 Proof of Concept

Figure 2: Extracting slow features incrementally from a simple non-linear input signal.

(a). Input Signal (b). Output RMSE plot showing convergence of the first three IncSFA

features to the corresponding BSFA features. (c). Batch SFA output of the first slow

feature (d)-(f). IncSFA output of feature 1 at t = 2, 5, 10 epochs. (g). Batch SFA output

of the second slow feature (h)-(j). IncSFA output of feature 2 at t = 2, 5, 10 epochs.

As a basic proof of concept, IncSFA is applied to introductory problem from the

original SFA paper (Wiskott and Sejnowski, 2002). We want to show that IncSFA can

derive the same set of features as BSFA. The input signal is

x̆1(t) = sin(t) + cos(11 t)2, (18)

x̆2(t) = cos(11 t), t ∈ [0, 2π], (19)

Both input components vary quickly over time (see Figure 2(a)). The slowest feature

hidden in the signal is y1(t) = x̆1(t) − x̆2(t)2 = sin(t). The second slowest feature is

y2(t) = x̆2(t)
2.

Each epoch contains a total of 2, 000 discrete datapoints, over the entire range of t,

are used for learning. A quadratic input expansion is done. A learning rate of ηMCA =

0.08 is used.
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Both BSFA and IncSFA extract the correct features. Figure 2(b) shows the Root

Mean Square Error (RMSE) of three IncSFA feature outputs compared to the corre-

sponding BSFA outputs, over multiple epochs of training, showing that the IncSFA

features converge to the correct ones. Figures 2(c) and (g) show feature outputs of

batch SFA, and (to the right) IncSFA outputs at 2, 5, and 10 epochs. Figures 2(g)-(j)

show this comparison for the second feature. This basic result shows that it is indeed

possible to extract multiple slow features in an online way without storing covariance

matrices.

4.2 Feature Adaptation to a Changing Environment
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Figure 3: (a) RMSE of IncSFA’s first two output functions with respect to the true

functions for original signal (epochs 1-59), and switched signal (epochs 60-120). (b)

Normalized similarity (direction cosine) of the first slow feature to the true first slow

feature of the current process, over 25 independent runs. (c) Normalized similarity of

the second incremental slow feature.

The purpose of this experiment is to illustrate how IncSFA’s features adapt to an

unpredicted sudden shift in the input process. The input used is the same signal as in

Experiment #1, but broken into two partitions. At epoch 60, the two input lines x1 and

x2 are switched such that the x1 signal suddenly carries what x2 used to, and vice versa.

IncSFA can first learn the slow features in the first partition, then is able to adapt to

learn the slow features in the second partition.

Here, the signal is sampled 500 times per epoch. The CCIPCA learning rate param-

eters, also used to set the learning rate of the input average x̄, were set to t1 = 20, t2 =

200, c = 4, r = 5000 (See Sec.5.2). The MCA learning rate is a constant ηmca = 0.01.
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Figure 4: Outputs of first two slow features, from epoch 59 through 61, extracted by

batch SFA over the input sequence.

Results of IncSFA are shown in Fig. 3, demonstrating successful adaptation. To

measure convergence accuracy, we use the direction cosine (Chatterjee et al., 2000)

between the estimated feature w(t) and true (unit length) feature w∗,

DirectionCosine(t) =
|wT (t) ·w∗|
‖wT (t)‖ · ‖w∗‖

, (20)

The direction cosine equals one when the directions align (the feature is correct) and

zero when they are orthogonal.

BSFA results are shown in Fig. 4. The first batch feature somewhat catches the meta-

dynamics and could actually be used to roughly sense the signal switch. However, the

dynamics within each partition are not extracted. The BSFA result might be improved

by generating embedding-vector time series (Wiskott, 2003) and increasing the non-

linear expansion. But due to long duration of the signals and the unpredicted nature of

the signal switch, time-embedding with a fixed delay might not be able to recover the

dynamics appreciably.

4.3 Recovery from Outliers

Now, we show the effect of a single extreme outlier on both BSFA and IncSFA. Again,

the learning rate setup and basic signal from the previous experiments are used, with

500 samples per epoch, over 150 epochs. A single outlier point is inserted at time 100

(only in the first epoch!): x1(100) = x2(100) = 2000.
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Figure 5: First output signals of IncSFA and BSFA on the simple signal with a single

outlier.

Figure 5 shows the first output signal of BSFA and IncSFA. The one outlier point at

time 100 (out of 75,000) is enough to corrupt the first feature of BSFA, whereas IncSFA

recovers. It is possible to include clipping Franzius et al. (2007) in BSFA, so that the

effect of the outliers that have different variance statistics compared to the signal can be

overcome.

Outliers that are generated from another signal source lying within the variance of

the main signal can affect the BSFA output in a different way. We refer to a real-world

experiment (Kompella et al., 2011b), using AutoIncSFA (where the input to IncSFA is

the output at a bottleneck layer of an autoencoder neural net — for image compression)

on an image sequence, in which a person moves back and forth in front of a stable

camera. At only one point in the training sequence, a door in the background is opened.

The BSFA hierarchical network’s first slow feature became sensitive to this event. Yet,

the AutoIncSFA network’s first slow feature encodes the relative distance of the moving

interactor.

4.4 High-Dimensional Video with Linear IncSFA

Via IncSFA, SFA can be utilized in some high-dimensional video processing appli-

cations without using deep receptive-field based networks. CCIPCA provides an in-

termediate dimensionality reduction, which, when low enough compared to the input

dimension, can greatly reduce the computational and space complexities as well as the

search space for the slow features via MCA.

As a first experiment to show this, we extract SFs from a rotating vision-based agent

in a square room. The room has four complex-textured walls. See Fig. 6(a). Each image
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Figure 6: (a) Stream of 90 41 × 41 × 3 images as the agent completes one rotation

(360 degrees). There are 10 subsequent images per row, starting from the top-left. The

image after that at the far right of a row starts at the far left of the lower row. (b) All 90

images (noise-free) projected onto the first three features learned by IncSFA. We can

easily see the 1D and circular nature of the agent’s movement within the environment.

This embedding can be used as a compact encoding of the agent’s state.

is dimension 41× 41× 3.

In each episode4, starting from a different orientation, the agent rotates slowly (4

degree shifts from one image to the next) by 360 degrees, each episode. At any time, a

slight amount of Gaussian noise is added to the image (σ = 8).

Each 5, 043 dimensional image is fed into a linear IncSFA directly. Only the 40

most significant principal components are computed by CCIPCA, using learning rate

parameters t1 = 20, t2 = 200, c = 4, r = 5000 (See Sec.5.2). Computation of the

covariance matrix and its full eigendecomposition (over 5000 eigenvectors and eigen-

values) is therefore avoided. On the 40 dimensional whitened difference signal, only

the first 5 slow features are computed via CIMCA.

500 epochs through the data took approximately 15 minutes using Matlab on a ma-

chine with an Intel i3 CPU and 4 GB RAM. This is a framerate of about 50fps.

4IncSFA can be readily extended to episodic tasks, with a minor modification: The

derivative signal, which is computed as a difference over a single time step, is simply not

computed for the starting sample of each episode. The first data point in each episode

is used for updating the PCs, but not the slow feature vectors.
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The result of projecting the (noise-free) data onto the first three slow features are

shown in Fig. 6(b). A single linear IncSFA has incrementally compressed this high-

dimensional noisy sequence to a nearly unambiguous compact form, learning to ignore

the details at the pixel level and attend to the true cyclical nature underlying the image

sequence. We say “nearly” since a few subsequences have somewhat ambiguous en-

codings, probably because certain images associated with slightly different angles are

very similar.

4.5 iCub Experiment

Again, we use a single layer of IncSFA on high-dimensional vision sequences. Two

plastic cups are placed in the iCub robot’s field of view. The robot performs motor

babbling in one joint of its right arm, using a movement paradigm derived from Franzius

et al. During the course of babbling, it happens to topple both cups, in one of two

possible orders. The episode ends a few frames after it has knocked both down. A new

episode begins with the cups upright again and the arm in the beginning position. A

total of 50 separate episodes were recorded and the images used as training data.

IncSFA updates from each 80× 60 (grayscale) image. Only the 20 most significant

principal components are computed by CCIPCA, using learning rate parameters t1 =

20, t2 = 200, c = 2, r = 10000 (See Sec.5.2). Only the first 5 slow features are

computed via CIMCA with learning rate 0.001. The MCA vectors are normalized after

each update during the first 10 episodes, but not thereafter (for faster convergence). The

algorithm runs for 400 randomly-selected (of the 50 possible) episodes. We replicated

it 25 times.

Results are shown in Fig. 7. The slowness of the feature outputs were measured

on three “testing” episodes, after each episode of training. The upper left plot shows

that all five features get slower as they train over the 400 episodes. Figure 8 shows the

average mutual direction cosine between non-identical pairs of slow features, and we

can see the features quickly become nearly decorrelated.

After training completes, we embed the images in a lower dimension using the

learned features. The embedding of trajectories of 20 different episodes are shown with

respect to the first two PCs as well as the first two slow features. Since the cups being
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Figure 7: Experimental result of IncSFA on episodes where the iCub knocks down two

cups via motor babbling on one joint. Upper left: The average slowness of the five

features at each episode. Upper right: after training, several episodes (each episode is

an image sequence where the cups are eventually both knocked down) are embedded in

the space spanned by the first two PCs. Lower right: the same episodes are embedded

in the space spanned by the first two slow features. We show some example images and

where they lie in the embedding. The cluster in the upper right (A) represents when

both cups are upright. When the robot knocks down the blue cup first, it moves to the

cluster in the upper left (B1). If it instead knocks down the brown cup, it moves to the

lower right cluster (B2). Once it knocks down both cups, it moves to the lower left area

(C).

toppled or upright are the slow events in the scene, IncSFA’s encoding is keyed on the

object’s state (toppled or upright). PCA does not find such an encoding, being much

more sensitive to the arm. Such clear object-specific low-dimensional encoding, invari-

ant to the robot’s arm position, is useful, greatly facilitating training of a subsequent
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Figure 8: Average slow feature similarity over episodes in the iCub experiment.

regressor or reinforcement learner. A video of the experimental result can be found at

http://www.idsia.ch/˜luciw/IncSFAArm/IncSFAArm.html.

4.6 Hierarchical IncSFA

Figure 9: Example Hierarchical-IncSFA Architecture. This also shows the structure of

an IncSFA node, which contains a linear IncSFA unit followed by nonlinear expansion

followed by another linear IncSFA unit.

Here, for completeness, we test IncSFA within a deep receptive-field based network

— at all layers — although the utility of this approach is unclear.

Deep networks composed of multiple stacked BSFA nodes, each sensitive to only

a small part of the input (i.e., receptive fields), are typically used for SFA processing
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high-dimensional images. The slow features will be linear combinations of the input

space components. Since there’s no guarantee the useful information is linear in the

original sensory space, an expanded space is often used. For example, a quadratic

expansion adds all combinations of input components, or a cubic expansion adds all

triples. But the degree of expansion required to construct a space where the “interesting

information” will be some linear combination, may increase the dimension intractably.

What has been done to deal with these cases is to use multilayer, receptive-field based

networks (Wiskott and Sejnowski, 2002; Franzius et al., 2007), which reduce the com-

plexity for any SFA module by partitioning spatially on each layer into receptive fields,

while having a low-order (e.g., quadratic) expansion within each receptive field. A suc-

cession of low-order expansions over multiple layers lead to an overall expansion which

is high-order.

Hierarchical networks introduce new parameters (receptive field size, number of

layers, etc.) that can be difficult to tune. We have tried to show in the last two exper-

iments that there is another applicable tactic, which is to apply IncSFA monolithically

to the (possibly even expanded) high-dimensional input, extracting K << I principle

components with CCIPCA and J slow features. But we can also use IncSFA within a

deep network architecture.

Figure 9 shows an example deep network, motivated by the human visual system

and based on the one specified by Franzius et al. (Franzius et al., 2007). The network

is made up of a converging hierarchy of layers of IncSFA nodes, with overlapping

rectangular receptive fields. Each IncSFA node finds the slowest output features from

its input within the subspace of quadratically expanded inputs.

Input images come from a high-dimensional video stream generated by the iCub

simulator (Tikhanoff et al., 2008), an OpenGL-based software specifically built for the

iCub robot. Our experiment mimics the robot observing a moving interactor agent,

which in the simulation takes the form of a rectangular flat board moving back and

forth in depth over the range {1, 3} (meters) in front of the robot, using a movement

paradigm based on that of Franzius. Figure 10(a) shows the experimental setup in the

iCub simulator. Figure 10(b) shows a sample image from the dataset. 20, 000 monocular

images are captured from the robot’s left eye and downsampled to 83×100 pixels (input

dimension of 8, 300).
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A three-layer IncSFA network is used to encode the images. Each SFA node oper-

ates on a spatial receptive field of the layer below. The first layer uses 15 × 19 nodes,

each with 10 × 10 image patch receptive field and a 5 pixel overlap. Each node on

this layer develops 10 slow features. The second layer uses 4× 5 nodes, each having a

5 × 5 receptive field, and developing 5 slow features. The third layer uses two nodes,

one sensitive to the top half, the other sensitive to the bottom half (5 slow features).

The forth layer uses a single node and a single slow feature. The network is trained

layer-wise from bottom to top, with the lower layers frozen once a new layer begins its

training. The CCIPCA output of all nodes is clipped to [−5, 5], to avoid any outliers

that may arise due to close-to-zero eigenvalues in some of the receptive fields that con-

tain unchanging stimuli. Each IncSFA node is trained individually, that is, there is no

weight sharing among nodes.

Figure 10: (a) Experimental Setup: iCub Simulator (b) Sample image from the input

dataset (c) Batch-SFA output (d) IncSFA output (ηmca = 0.005)
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For comparison, a BSFA hierarchical network was also trained on this data. Figures

10 show BSFA and IncSFA outputs. The expected output is of the form of a sinusoid

extending over the range of board positions. IncSFA gives a slightly noisy output,

probably due to the constant dimensionality reduction value for all units in each layer

of the network, selected to maintain a consistent input structure for the subsequent layer;

hence some units with eigenvectors corresponding to very small eigenvalues emerge in

the first stage, with receptive fields observing comparatively few input changes, thus

slightly corrupting the whitening result, and adding small fluctuations to the overall

result.

Finally, we evaluate how well the IncSFA feature codes for distance. A supervised

quadratic regressor is trained with ground truth labels on 20% of the dataset, and tested

on the other 80%, to measure the quality of features for some classifier or reinforcement

learner using them. The RMSE was found to be equal to 0.043 meters.

5 Supplementary Topics

5.1 On Non-Divergence and Convergence

For CCIPCA: If the standard conditions on learning rate (Papoulis et al., 1965) (in-

cluding convergence at zero), the first stage components will converge to the true PCs,

leading to a “nearly-correct” whitening matrix in reasonable time. So, if input x is

stationary, the slow feature estimates are likely to become quite close to the true slow

features in a reasonable amount of updates.

In open-ended learning, convergence is usually not desired. Yet by using a learning

rate that is always nonzero, the stability of the algorithm is reduced. This corresponds

to the well-known stability-plasticity dilemma (Grossberg, 1980).

For stability and convergence of incremental MCA, the following constraints must

be satisfied (Peng et al., 2007),

ηMCAλ∗1 < 0.5, (21)

||w(0)||2 ≤ 1

2ηMCA
, (22)

wT (0)w∗ 6= 0 (23)
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where w(0) is the initial feature estimate, w∗ the true eigenvector associated with the

smallest eigenvalue, and λ∗1 the largest eigenvalue. In other words, the learning rate must

not be too large, and the initial estimate must not be orthogonal to the true component.

It is clear that if whitened signal z is drawn from a stationary distribution, the MCA

convergence proof (Peng et al., 2007) applies. But typically the whitening matrix is be-

ing learned simultaneously. In this early stage, while the CCIPCA vectors are learning,

care must be taken to ensure that the slow feature estimates will not diverge.

Peng showed that for any initial vector w(0) within the set S,

S =

{
w(t)|w(t) ∈ RK and ‖w(t)‖2 ≤ 1

2ηMCA

}
, (24)

w(t) (∀t ≥ 0) will remain in S throughout the dynamics of the MCA updating. Thus,

‖w‖ must be prevented from getting too large until the whitening matrix is close to

accurate. With respect to lower-order slow features, there is additional dependence on

the sequential addition technique, parameterized by γ(t) = λ1(t) + ε. This γ(t) also

needs time to estimate a close value to the first eigenvalue λ1. Before these estimates

become reasonably accurate, the input can knock the vector out of S.

In IncSFA, w is normalized after each update. If ‖w(0)‖ = 1 then any learning rate

ηmca ≤ 0.5 ensures non-divergence.

Even if w remains in S, the additional constraint wT (0)w∗ 6= 0 is needed for con-

vergence. But this is an easy condition to meet, as it is unlikely that any w(t) will be

exactly orthogonal to the true feature. In practice, it may be advisable to add a small

amount of noise to the MCA update. But we did not find this to be necessary.

5.2 Learning Rate Scheduling

The methods we used to schedule the learning rates ηPCA and ηMCA are presented in

Algorithm 5. There are certainly many other ways to set the learning rates.
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Algorithm 5: LEARNINGRATESCHEDULE(θ, t)

//Example Learning Rate Schedule

//θ = (t1, t2, c, r, ηl, ηh, T )

//example: t1 = 20, t2 = 200, c = 3, r = 2000

1 µt =


0 if t ≤ t1,

c(t− t1)/(t2 − t1) if t1 < t ≤ t2,

c+ (t− t2)/r if t2 < t.

2 ηPCAt ← (1 + µt)/t

//example: ηh = 0.01, ηl = 0, T = 2000

3 ηMCA
t =

 ηl + (ηh − ηl) ∗
(
t
T

)2
if t ≤ T,

ηh if T < t.

4 return {ηPCAt , ηMCA
t }

5.1 Pseudo-optimality

For CCIPCA, the learning rate schedule is based around the optimal ηPCAt = 1
t
. If we

use 1/t, Eq. 10 will be the most efficient estimator of the principal component. The

most efficient estimator on average requires the least samples for learning (among all

unbiased estimators). For several common distribution types, e.g., Gaussian, the sample

mean is the maximum likelihood estimator of the population mean. And observe that

Eq. 10 reformulates the eigenvector estimation problem as a mean estimation problem.

Therefore, Eq. 10 and learning rate 1/t has a spatiotemporal optimality: at any t the

estimate is expected to be the best as compared to any other unbiased estimator.

Learning rate 1/t is only spatiotemporally optimal if every sample from t = 1, 2, ...,∞

is drawn from the same distribution, which will not be the case for the lower-order com-

ponents, and in general for autonomous agents. We use an amnesic averaging technique,

where the influence of old samples on the current estimates diminish over time. We used

the three-sectioned amnesic averaging function µ, shown in the algorithm. It uses three

stages, defined by points t1 and t2. In the first stage, the learning rate is 1
t
. In the second,

the learning rate is scaled by c to speed up learning of lower-order components. In the

third, it changes with t, eventually converging to 1/r.

This amnesic average remains an unbiased estimators of the true PCs, and it allows
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components to adapt to changing input statistics. But this plasticity introduces an ex-

pected error that will not vanish with more samples (Weng and Zhang, 2006). This

introduces some expected error into the IncSFA whitening process. Our results show

that this is not problematic for many applications, but this typically leads to a slight

oscillatory behavior around the true features.

5.2 Preventing divergence via the MCA learning rate

To prevent divergence while CCIPCA is still learning, we used a slowly rising learning

rate for MCA, starting from low ηl at t = 0 and rising to high ηh at t = T , as shown in

Algorithm 5. Ideally, T is a point in time when whitening has stabilized.

The upper bound ηb of permissible ηh is related to the first condition in Eq. 21:

ηh < ηb =
1

2λ∗1
, (25)

where λ∗1 is the greatest eigenvalue of the signal. Constant values close to but below the

bound will achieve faster convergence.

5.3 Other Methods of Neural Updating in PC and MC Extraction

Neural layers that compute incremental PCA (IPCA) and MCA build on the work

of Amari (1977) and Oja (1982). They showed that a linear neural unit using Heb-

bian updating could incrementally compute the first principal component of a data

set (Amari, 1977; Oja, 1982)5. Many IPCA algorithms emerged after that. Some

well-known ones are Oja and Karhunen’s Stochastic Gradient Ascent (SGA) (Oja,

1985), Oja’s Subspace algorithm (Oja, 1989), Sanger’s Generalized Hebbian Algorithm

(GHA) (Sanger, 1989), the Weighted Subspace algorithm (Oja, 1992), and CCIPCA.

For more information on comparisons, see (Oja, 1992; Hyvärinen et al., 2001; Weng

et al., 2003). CCIPCA (Weng et al., 2003) modified GHA to be “candid” — meaning it

is invariant to input vector magnitude, thus learning rate tuning became more intuitive,

which increased the practicality of the algorithm for high-dimensional inputs such as in

appearance-based computer vision. There is another recent IPCA algorithm that adds

5Earlier work of a non-neural network flavor had shown how the first PC, including

the eigenvalue could be learned incrementally (Krasulina, 1970).
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GSO to CCIPCA Park and Choi (2008), so that the lower-order components should

converge quicker, but with higher complexity.

We created IncSFA with experiments on high-dimensional data in mind. Thus, we

chose CCIPCA for IncSFA for the following reasons.

1. Covariance-Free. Mentioned earlier. Due to high-dimensionality, it is important

to keep space complexity down.

2. Avoid Gram-Schmidt orthonormalization (GSO) for enforcing orthogonality.

Instead, we prefer the residual (Kreyszig, 1988) method. GSO will give more

accurate result for lower-order components, but at quadratic (in the number of

components) complexity. The residual method is local (linear complexity), but

can be less accurate. Again, due to high-dimensionality, we felt it important to

avoid quadratic complexity. Further, our experimental results showed that effec-

tive slow features could emerge even when the whitening matrix was not perfect.

3. Both Eigenvalues and Eigenvalues Needed. We need a method that converges

to both eigenvectors and eigenvalues, necessary since whitening requires both.

4. Intuitive to Tune the Learning Rate. It is not practical to spend a lot of time

tuning learning rates for every different type or set of data.

As for MCA: Xu et al. (Xu et al., 1992) were the first to show that a linear neural

unit equipped with anti-Hebbian learning could extract minor components. Oja modi-

fied SGA’s updating method to an anti-Hebbian variant (Oja, 1992), and showed how

it could converge to the MC subspace. Studying the nature of the duality between PC

and MC subspaces (Wang and Karhunen, 1996; Chen et al., 1998), Chen, Amari and

Lin (Chen et al., 2001) (2001) introduced the sequential addition technique. This en-

abled linear networks to efficiently extract multiple MCs simultaneously. Building upon

previous MCA algorithms, Peng (2007) (Peng et al., 2007) derived the conditions and

a learning rule for extracting MCs for a constant learning rate. Sequential addition was

added to this rule so that multiple MCs could be extracted (Peng and Yi, 2006).

We use a modified version of Peng’s MCA updating method, slightly altered to be

covariance-free and using GSO (we simply call it CIMCA). Unlike simple MCA al-

gorithms, Peng’s MCA is a deterministic discrete time (DDT) method, which requires
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setting a constant learning rate to achieve convergence. The method has low computa-

tional complexity and is shown to work even for singular or near-singular correlation

matrix of the input. This makes it practical and especially feasible for non-stationary

data where the correlation coefficient behaves like a random variable.

CIMCA gives us the actual minor components (slow features), not just the subspace

they span. It allows for a constant learning rate, which can be quite high, leading to a

quick reasonable estimate of the true components, and making learning rate tuning more

intuitive. Unlike at the IPCA stage, here GSO is useful and plausible since we expect

not to have too many features (minimizing the effect of the quadratic complexity) and

we don’t care about their magnitude.

It should be noted that there are many different ways of combining an incremental

PCA and an incremental MCA. We present our reasons for selecting the methods in

IncSFA above. Our motivation should be kept in mind: we intend to apply IncSFA

on real-world image sequences and on vision-based robotic platforms, aiming towards

autonomous learning, which is open-ended, continuous, etc.

5.4 Links to Biological Systems

BSFA has been shown to derive slow features that operate like biological grid cells from

quasi-natural image streams, which are recorded from the camera of a moving agent

exploring an enclosure (Franzius et al., 2007). In rats, grid cells are found in entorhi-

nal cortex (EC) (Hafting et al., 2005), which feeds into the hippocampus. Place cells

and head-direction cells are found in rat hippocampus (O’Keefe and Dostrovsky, 1971;

Taube et al., 1990), while spatial view cells are found in primate hippocampus (Rolls,

1999). Augmenting the BSFA network with an additional competitive learning (CL)

layer derives units similar to place, head-direction, and spatial view cells.

Although BSFA results exhibit the above biological link, it is not clear how the

full SFA technique might be realized in the brain. IncSFA with its Hebbian and anti-

Hebbian updating provides a more biologically plausible implementation of the full

SFA algorithm.
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5.1 Hebbian Updating in CCIPCA

Hebbian updates of synaptic strengths of some neuron make it more sensitive to ex-

pected input activations (Dayan and Abbott, 2001):

v← v + η g(v,u) u, (26)

where u represents pre-synaptic (input) activity, and g post-synaptic activity (a function

of similarity between synaptic weights v and input potentials u). The basic Eq. 26

requires additional care (e.g., normalization of v) to ensure stability during updating.

To handle this in one step, learning rate η and retention rate 1− η can be used,

v← (1− η)v + η g(v,u) u. (27)

where 0 ≤ η ≤ 1. With this formulation, Eq. 10 is Hebbian, where the post-synaptic ac-

tivity is the normalized response g(v,u) =
u(t) · v(t− 1)

‖v(t− 1)‖
and the presynaptic activity

is the input ui.

5.2 Anti-Hebbian Updating in CIMCA

The general form of anti-Hebbian updating simply results from flipping the sign in

Eq. 26. In IncSFA notation:

w← w − η g(w, ż) ż. (28)

To see the link between Peng’s MCA updating and the anti-Hebbian form, in the

case of the first MC, we note Eq. 12 can be rewritten as

w1 ← 1.5w1 − η
[
C1 w1 + [wT

1 w1] w1

]
, (29)

← 1.5w1 − η [(ż ·w1) ż + (w1 ·w1) w1] , (30)

← 1.5w1 − η ‖w1‖2 w1 − η ((ż ·w1) ż) , (31)

←
(
1.5− η ‖w1‖2

)
w1 − η (ż ·w1) ż, (32)

where (ż ·w1) indicates post-synaptic strength, and ż pre-synaptic strength.
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5.3 Hebbian Learning on Filtered Output

There is an alternative to using anti-Hebbian learning. Sprekeler et al. (Sprekeler et al.,

2007) reformulated the slowness objective: instead of minimizing the variance of the

time derivative of the output signal, they try to maximize the variance of the low-pass fil-

tered output signal. They show analytically that the extraction of the single most slowly

varying direction from pre-whitened input can be implemented in a linear continuous

model with spiking model neurons by means of a modified hebbian learning rule with

a specific learning window.

Hebbian learning between a temporally filtered output and input is the basis of sev-

eral other temporal-stability based learning rules (Földiák, 1991; O’reilly and Johnson,

1994; Wallis and Rolls, 1997). Links between these and slowness learning are provided

by Sprekeler et al. (Sprekeler et al., 2007). However, even though Sprekeler’s method is

only for the first feature, it might lead to alternate approach to reach a fully incremental

SFA.

5.5 Velocity Estimates of the Input Signal

The velocity estimates (the derivative signal) in the original SFA technique are approx-

imated via a backward difference method ż(t) = z(t)− z(t− 1). This method behaves

badly in the presence of input noise compared to other methods (that are computa-

tionally expensive) such as higher order difference estimation, cauchy’s differentiation

formula, or lanczos derivative computation etc. (Groetsch, 1998). However, noise is

usually not a severe problem, since it changes at a faster time-scale compared to the

slowest components and therefore does not show up in the higher-order slow features.

Therefore, we opted the same backward difference method for the IncSFA to keep it

computationally simple.

6 Conclusions

This paper describes the novel Incremental Slow Feature Analysis technique, which

updates slow features incrementally without computing covariance matrices. IncSFA’s

main advantages are low computational and space complexities. For many instances,
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there is no need to use IncSFA instead of BSFA. But at higher dimensionalities, IncSFA

becomes more and more appealing. For some problems with very high-dimensionality

and limited memory, IncSFA could be the only option, e.g., an autonomous robot with

limited onboard hardware, which could still learn slow features from its visual stream

via IncSFA. Experiments showed how IncSFA enables an adaptive SFA, and how it

enables SFA to be applied to high-dimensional image streams without using multilayer

receptive-field based BSFA architectures. IncSFA’s Hebbian and anti-Hebbian updates

add biological plausibility to SFA itself. Our future work aims at applying IncSFA to

developmental robotics.
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