
Slowness Learning for Curiosity-Driven
Agents

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Varun Raj Kompella

under the supervision of

Prof. Jürgen Schmidhuber

December 2014





Dissertation Committee

Prof. Stefan Wolf Università della Svizzera italiana, Switzerland

Prof. Matthias Hauswirth Università della Svizzera italiana, Switzerland

Prof. Laurenz Wiskott Ruhr-Universität Bochum, Germany

Prof. Srini Narayanan Google, Zurich & Univ. of California-Berkeley, USA

Prof. Benjamin Kuipers University of Michigan, Michigan, USA

Dissertation accepted on 18 December 2014

Research Advisor PhD Program Director

Prof. Jürgen Schmidhuber Prof. Igor Pivkin

i



I certify that except where due acknowledgement has been given, the work pre-

sented in this thesis is that of the author alone; the work has not been submitted

previously, in whole or in part, to qualify for any other academic award; and the

content of the thesis is the result of work which has been carried out since the offi-

cial commencement date of the approved research program.

Varun Raj Kompella

Lugano, 18 December 2014

ii



To my beloved parents and soon-to-be wife

iii



iv



Abstract

In the absence of external guidance, how can a robot learn to map the many raw

pixels of high-dimensional visual inputs to useful action sequences? I study methods

that achieve this by making robots self-motivated (curious) to continually build com-

pact representations of sensory inputs that encode different aspects of the changing

environment. Previous curiosity-based agents acquired skills by associating intrin-

sic rewards with world model improvements, and used reinforcement learning (RL)

to learn how to get these intrinsic rewards. But unlike in previous implementations,

I consider streams of high-dimensional visual inputs, where the world model is a

set of compact low-dimensional representations of the high-dimensional inputs. To

learn these representations, I use the slowness learning principle, which states that

the underlying causes of the changing sensory inputs vary on a much slower time

scale than the observed sensory inputs. The representations learned through the

slowness learning principle are called slow features (SFs). Slow features have been

shown to be useful for RL, since they capture the underlying transition process by

extracting spatio-temporal regularities in the raw sensory inputs. However, existing

techniques that learn slow features are not readily applicable to curiosity-driven on-

line learning agents, as they estimate computationally expensive covariance matrices

from the data via batch processing.

The first contribution called the incremental SFA (IncSFA), is a low-complexity,

online algorithm that extracts slow features without storing any input data or esti-

mating costly covariance matrices, thereby making it suitable to be used for several

online learning applications. However, IncSFA gradually forgets previously learned

representations whenever the statistics of the input change. In open-ended online

learning, it becomes essential to store learned representations to avoid re-learning

previously learned inputs.

The second contribution is an online active modular IncSFA algorithm called the

curiosity-driven modular incremental slow feature analysis (Curious Dr. MISFA).

Curious Dr. MISFA addresses the forgetting problem faced by IncSFA and learns

expert slow feature abstractions in order from least to most costly, with theoretical

guarantees.
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The third contribution uses the Curious Dr. MISFA algorithm in a continual

curiosity-driven skill acquisition framework that enables robots to acquire, store,

and re-use both abstractions and skills in an online and continual manner.

I provide (a) a formal analysis of the working of the proposed algorithms; (b)

compare them to the existing methods; and (c) use the iCub humanoid robot to

demonstrate their application in real-world environments. These contributions to-

gether demonstrate that the online implementations of slowness learning make it

suitable for an open-ended curiosity-driven RL agent to acquire a repertoire of skills

that map the many raw pixels of high-dimensional images to multiple sets of action

sequences.



Acknowledgements

To begin with, I would like to express my deep-felt gratitude towards my supervisor,

Jürgen Schmidhuber, who advised, encouraged and supported my ideas right from

the beginning of my PhD research at IDSIA. I adopted one of his mantras “maximize

the cumulative wow-effects in life” as a motto of my life.

My research work in the area of slow feature analysis began from an internship

with Mathias Franzius at the Honda Research Institute Offenbach. I thank Mathias

for introducing me to the topic and inspiring me to apply it on the Honda ASIMO

robot. It was an amazing experience working with Mathias and the ASIMO robot.

At the near end of the internship, I felt that robots needed more than just slow fea-

tures; some unguided means of active exploration, however, I was not able to jot the

points together to form a clearer picture. That is when I stumbled across Jürgen’s

web-page on “Active Exploration, Artificial Curiosity and What’s Interesting”. At

that point, it became clear to me on what topic I wanted to do my PhD research:

using slow features for a curiosity-driven agent.

It was an immense pleasure working in IDSIA during the four years of my PhD

and I thank all my colleagues for providing a friendly and competitive environment.

I am grateful to Matthew Luciw for guiding and motivating me through out my

PhD work. It was a pleasure collaborating with him on several research papers and

I hope it continues in the future. I thank Alan Lockett, Faustino Gomez and Jan

Koutnik for providing valuable suggestions for several of my papers and talks. I had

great fun spending time discussing and debating several technical and non-technical

topics with Jonathan Masci, Marijn Stollenga, Sohrob Kazerounian, Hung Ngo and

many other idsiani. I would like to especially thank Cinzia Daldini, our secretary,

for making my life easier by helping me with procedures till the very end of my stay

in Lugano.

I also wish to show my indebtedness to my dissertation committee, Benjamin

Kuipers, Srini Narayanan, Laurenz Wiskott, Stefan Wolf and Matthias Hauswirth,

for reviewing my thesis and providing useful suggestions for my future work.

And finally, I must thank my parents, my brothers and soon-to-be wife, for their

loving support and inspiring me to approach and achieve my goals that I had kept

vii



viii

during the PhD program. I couldn’t have achieved anything without their continued

love.



Contents

Contents ix

1 Introduction 1

1.1 Approach to Task-Learning . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7

2.1 Slow Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Markov Decision Process . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Bellman Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Temporal Difference Learning . . . . . . . . . . . . . . . . . . 13

2.3 Theory of Artificial Curiosity . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Incremental Slow Feature Analysis 19

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Principal Components for Whitening . . . . . . . . . . . . . . 21

3.2.2 CCIPCA Updating . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Lower-Order Principal Components . . . . . . . . . . . . . . . 23

3.2.4 MCA Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.5 Covariance-Free MCA . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Proof of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . 25

ix



x Contents

3.4.2 Feature Adaptation to a Changing Environment . . . . . . . . 27

3.4.3 Recovery from Outliers . . . . . . . . . . . . . . . . . . . . . . 29

3.4.4 High-Dimensional Video with Linear IncSFA . . . . . . . . . 30

3.4.5 iCub Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.6 Hierarchical IncSFA . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Supplementary Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.1 On Non-Divergence and Convergence . . . . . . . . . . . . . 36

3.5.2 Intermediate dimensionality reduction . . . . . . . . . . . . . 37

3.5.3 On complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.4 Learning Rate Scheduling . . . . . . . . . . . . . . . . . . . . . 38

3.5.5 Other Methods of Neural Updating in PC and MC Extraction 39

3.5.6 Links to Biological Systems . . . . . . . . . . . . . . . . . . . 41

3.5.7 Velocity Estimates of the Input Signal . . . . . . . . . . . . . 43

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Curiosity-Driven Modular Incremental Slow Feature Analysis 45

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Learning Problem Formalized . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 RL Agent’s Internal Environment . . . . . . . . . . . . . . . . 53

4.3.2 Abstraction-Estimator (Θ): IncSFA-ROC . . . . . . . . . . . 54

4.3.3 Estimation error (ξ) . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.4 Intrinsic Reward Function Estimate (Rint) . . . . . . . . . . . 58

4.3.5 Observation Stream Selection Policy (πint) . . . . . . . . . . . 58

4.3.6 Gating Function (G ) . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.7 Dynamical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Design Considerations: Maze Environments . . . . . . . . . . . . . . 66

4.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.1 Proof of Concept: Synthetic Signals . . . . . . . . . . . . . . . 69

4.6.2 10 Different Input Signals . . . . . . . . . . . . . . . . . . . . . 73

4.6.3 Maze Environment with Noisy Streams . . . . . . . . . . . . . 74

4.6.4 Large Maze Environment with Duplicated Streams . . . . . . 76

4.6.5 An iCub Experiment: High-Dimensional Image Streams . . 78

4.7 Neural Correlates to Curious Dr. MISFA . . . . . . . . . . . . . . . . . 80

4.7.1 SFA and Competitive Learning — Entorhinal Cortex and

Hippocampus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7.2 Neuromodulatory Subsystems for Intrinsic Reward and Task

Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



xi Contents

4.7.3 Frontal Cortex: Value Function and Representation Selection 83

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Continual Curiosity-Driven Skill Acquisition 87

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Learning Problem Formalized . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Curiosity-Driven Skill Acquisition Problem . . . . . . . . . . 90

5.2.2 Continual Curiosity-Driven Skill Acquisition . . . . . . . . . 94

5.3 Method Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Input Exploratory Options . . . . . . . . . . . . . . . . . . . . . 94

5.3.2 Curiosity-Driven Abstraction Learning: Curious Dr. MISFA 96

5.3.3 Learning a Target Option . . . . . . . . . . . . . . . . . . . . . 96

5.3.4 Reusing Target Options . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5.1 iCub Learns to Topple the Cup . . . . . . . . . . . . . . . . . . 104

5.5.2 iCub Learns to Grasp the Cup . . . . . . . . . . . . . . . . . . 107

5.5.3 iCub Learns to Pick and Place the Cup at the Desired Location111

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Discussion and Conclusion 115

6.1 Related Work on Intrinsically Motivated Autonomous Skill Acqui-

sition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A Proofs 123

Bibliography 141



xii Contents



Chapter 1

Introduction

Over the past decade, there has been a growing trend in humanoid robotics research

towards robots with a large number of joints, or degrees of freedom, notably the

ASIMO [Honda], PETMAN [Boston-Dynamics] and the iCub [Metta et al., 2008].

These robots demonstrate high dexterity and are potentially capable of carrying out

complex human-like manipulation. When interacting with the real world, these

robots are faced with several challenges, not least of which is the problem of how to

solve tasks that require processing an abundance of high-dimensional sensory data.

In the case of well structured environments, these robots can be carefully pro-

grammed by experts to solve a particular task. But real-world environments are

usually unstructured and dynamic, which makes it a daunting task to program these

robots manually. This problem can be simplified by using reinforcement learn-

ing [RL; Kaelbling et al., 1996; Sutton and Barto, 1998], where a robot learns to

acquire task-specific behaviors by maximizing the accumulation of task-dependent

external rewards through trial-and-error interactions with the environment.

Unfortunately, for humanoid robots equipped with vision, the sensory and joint

state space is so large that it is extremely difficult to obtain rewards (if any exist) by

random exploration. For example, if the robot receives a reward for sorting objects,

it could take an extremely long time to obtain the reward for the first time. Therefore,

it becomes necessary to (a) build lower-dimensional representations of the state-

space to make learning tractable and (b) to explore the environment efficiently. But

how can these robots learn to do this in the presence of external rewards that are

typically only sparsely available? This thesis explores this topic.

1



2 1.1 Approach to Task-Learning

Figure 1.1. A playroom scenario for a baby humanoid-robot in a lab environment,

where it is placed next to a table with a few moving objects. The robot has a limited

field-of-view and encounters continuous streams of images as it holds or shifts its

gaze. The figure shows three such perspectives oriented towards the moving objects.

How can the robot learn to solve tasks in the absence of external guidance?

1.1 Approach to Task-Learning

Much of the human capacity to explore and solve problems is driven by self-supervised

learning [White, 1959; Norman and Schmidt, 1992], where we seek to acquire be-

haviors by creating novel situations and learning from them. As an example consider

a simple playroom scenario for a baby humanoid as shown in Figure 1.1. Here, the

robot is placed next to a table with a few moving objects. The robot has a limited

field-of-view and encounters continuous streams of images as it holds or shifts its

gaze. If the robot can learn compact representations and predictable behaviors (e.g.,

grasping) from its interactions with the cup, then by using these learned behaviors,

it can speed up the acquisition of external rewards related to some teacher-defined

task, such as placing the cup at a particular location. Continually acquiring and

reusing a repertoire of behaviors and representations of the world, learned through

self-supervision, can therefore make the robot adept in solving many external tasks.

But how can the robot (a) self-supervise its exploration, (b) build representations

of high-dimensional sensory inputs, and (c) continually acquire skills that enable it

to solve new tasks? These problems have been researched separately in the machine

learning and robotics literature [Jolliffe, 1986; Abut, 1990; Schmidhuber, 1992a,c,b;

Lindstädt, 1993; Comon, 1994; Ring, 1994; Lee and Seung, 1999; Kohonen, 2001;

Klapper-Rybicka et al., 2001; Hinton, 2002; Wiskott and Sejnowski, 2002; Jenkins

and Matarić, 2004; Singh et al., 2004; Hart et al., 2008; Lee et al.; Stout and Barto,
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2010; Konidaris et al., 2011; Gisslén et al., 2011; Pape et al., 2012]. However,

to develop a single system that addresses all these important issues together is a

challenging open problem in artificial intelligence (AI) research. In this thesis, I

propose an online-learning framework that addresses this open problem.

In order to make the robot self-supervised or intrinsically-motivated to explore

new environments, I use the theory of Artificial Curiosity [AC; Schmidhuber, 2006b,

2010b]. AC mathematically describes curiosity and creativity. AC-driven agents

are interested in the learnable but as-yet-unknown aspects of their environment and

are disinterested in the already learned and inherently unlearnable (noisy) aspects.

Specifically, the agent receives intrinsic rewards for action sequences, and these re-

wards are proportional to the improvement of the agent’s internal model or predictor

of the environment. Using RL and the self-generated intrinsic rewards derived using

AC [Schmidhuber, 1991b; Storck et al., 1995; Schmidhuber, 1999a, 2006a, 2010a;

Pape et al., 2012], the agent is motivated to explore the environment where it makes

maximum learning progress.

Previous implementations of the curiosity theory have been applied only to low-

dimensional inputs or simple domains. I consider streams of high-dimensional vi-

sual inputs where the internal world model of the agent is a set of compact low-

dimensional abstractions of the environment. An abstraction maps the high-dimensional

input to a low-dimensional output. But how can these compact abstractions be

learned without a teacher? The high-dimensional data sensed by a robot is often

temporally correlated and can be greatly compressed into compact abstractions if the

temporal coherence in the data is exploited. Slow Feature Analysis [SFA; Wiskott

and Sejnowski, 2002; Franzius et al., 2007; Legenstein et al., 2010] is an unsuper-

vised learning algorithm that extracts temporal regularities from rapidly changing

raw sensory inputs. SFA is based on the Slowness Principle [Földiák and Young,

1995; Mitchison, 1991; Wallis and Rolls, 1997], which states that the underlying

causes of changing signals vary more slowly than the primary sensory stimulus. For

example, individual retinal receptor responses or gray-scale pixel values of video

may change quickly compared to latent abstract variables, such as the position of

a moving object. SFA has achieved success in many problems and scenarios, e.g.,

extraction of driving forces of a dynamical system [Wiskott, 2003], nonlinear blind

source separation [Sprekeler et al., 2014], preprocessing for reinforcement learn-

ing [Legenstein et al., 2010; Kompella et al., 2011b], learning of place-cells, head-

direction cells, grid-cells, and spatial view cells from high-dimensional visual in-

put [Franzius et al., 2007], dynamic scene classification [Theriault et al., 2013],

recognition of postures of a biped humanoid robot [Höfer et al., 2012], and human

action sequences [Zhang and Tao, 2012; Sun et al., 2014].

Existing SFA techniques are not readily applicable to curiosity-driven online
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learning agents, as they estimate covariance matrices from the data via batch pro-

cessing. The next section explores how online implementations of SFA make it

suitable for an open-ended curiosity-driven RL agent to acquire a repertoire of skills

that map the high-dimensional inputs to multiple sets of action sequences.

1.2 Contributions

In this section, I will briefly list out the contributions of this thesis that address the

open problems discussed earlier.

My first contribution, called the Incremental Slow Feature Analysis [IncSFA;

Kompella et al., 2011a, 2012a], is a low complexity, online implementation of batch

SFA (BSFA). IncSFA extracts slow features without storing any input data or esti-

mating costly covariance matrices. A few earlier techniques with temporal continu-

ity objectives were incremental as well [Hinton, 1989; Bergstra and Bengio, 2009].

But IncSFA follows the SFA formulation and uses hebbian and anti-hebbian update

rules to extract features that would be uncovered by BSFA, over which it has the

following advantages: (a) it is adaptive to changing input statistics; (b) it has linear

computational efficiency as opposed to cubic of BSFA; (c) it has reduced sensitivity

to outliers; and (d) it adds to the biological plausibility of BSFA. These advantages

make IncSFA suitable to use for several online learning applications. However, in

the case of open-ended curiosity-driven RL, IncSFA has a shortcoming. IncSFA,

like most online learning approaches, gradually forgets previously learned repre-

sentations whenever the statistics of the input change, for example, when the robot

shifts its gaze among the perspectives of Figure 1.1. It becomes essential to store

learned representations to avoid re-learning previously learned inputs.

My second contribution is an online active modular IncSFA algorithm, called

Curiosity-Driven Modular Incremental Slow Feature Analysis [Curious Dr. MISFA;

Kompella* et al., 2013; Kompella et al., 2012b]. Curious Dr. MISFA uses the theory

of artificial curiosity to address the forgetting problem faced by IncSFA, by retain-

ing what was previously learned in the form of expert modules [Ring, 1994]. From

a set of input video streams, Curious Dr. MISFA actively learns multiple expert

modules comprising slow feature abstractions in the order of increasing learning

difficulty, with theoretical guarantees. These theoretical optimality guarantees were

lacking in previous practical implementations of the curiosity theory [Schmidhuber,

2010b]. The algorithm continually estimates the initially unknown learning diffi-

culty through intrinsic rewards generated by exploring the input streams. Using

Curious Dr. MISFA, the robot in Figure 1.1 finds its interactions with the plastic cup

more interesting (easier to encode) than the complex movements of the other ob-
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Overview of the Contributions

Figure 1.2. Overview of the contributions. (a) Incremental Slow Feature Analysis

(IncSFA): Learns a slow feature abstraction from a raw image sequence. (b) Curiosity-

Driven Modular IncSFA (Curious Dr. MISFA): Learns multiple slow feature abstractions

from multiple image sequences, in the order of increasing learning difficulty. (c) Con-

tinual Curiosity-Driven Skill Acquisition (CCSA): Translates slow feature abstraction-

learning problem to a continual curiosity-driven skill acquisition problem.

jects. This results in a compact slow feature abstraction that encodes its interactions

with the cup. Eventually, the robot finds the cup-interaction boring and its interest

shifts towards encoding other perspectives while retaining the learned abstraction.

Can the robot simultaneously acquire reusable skills while acquiring abstractions?

Each learned abstraction encodes some previously unknown regularity in the input

observations that can then be used as a basis for acquiring new skills.
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As a final contribution, I propose a framework for Continual Curiosity-Driven

Skill Acquisition [CCSA; Kompella et al., 2014b] for acquiring, storing and re-using

both abstractions and skills in an online and continual manner. CCSA uses the Curi-

ous Dr. MISFA algorithm to learn a slow feature abstraction that encodes the easiest

to learn yet unknown regularity in the streams of high-dimensional visual informa-

tion. This representation augments the robot’s state space with new information

about the environment. I show how this information can have a higher-level (com-

pared to pixels) and useful interpretation, for example, if the robot has grasped a

cup in its field of view or not. After learning a representation, large intrinsic rewards

are given to the robot for performing actions that greatly change the feature output,

which has the tendency otherwise to change slowly in time. An acquired skill in-

cludes both the learned actions and the learned slow feature representation. Skills

are stored and reused to generate new observations, enabling continual acquisition

of complex skills. In the experiments, using CCSA, an iCub humanoid robot ad-

dresses the open problems discussed earlier, acquiring a repertoire of skills (topple,

grasp) from raw-pixel vision, driven purely by its intrinsic motivation. Figure 1.2

summarizes the contributions of this thesis.

1.3 Thesis Outline

The outline of the thesis is as follows. Chapter 2 presents some related background

to make the thesis stand on its own. Chapters 3, 4, 5 present details of my contri-

butions: Incremental SFA, Curious Dr. MISFA and CCSA algorithms respectively,

along with their experimental results. Chapter 6 discusses related research work

carried out by other researchers prior to this thesis and concludes by presenting in-

sights for future work. Appendix A presents detailed proofs of the all the theorems

presented in the thesis.



Chapter 2

Background

This chapter provides the necessary background to the research topics presented in

the following chapters. The chapter begins with a discussion on slow feature anal-

ysis (Section 2.1), followed by an overview or a mini-introduction to reinforcement

learning (Section 2.2) and the theory of artificial curiosity (Section 2.3). Due to vast-

ness of these background topics, the description presented in each of these sections

is not intended to be comprehensive, but merely to enable the subsequent discussion.

2.1 Slow Feature Analysis

At the core of all my contributed methods is the Slow Feature Analysis [SFA;

Wiskott and Sejnowski, 2002]. I use SFA to compactly encode regularities in the

localized image-stream of a robot. Here, I present a brief overview of SFA. SFA

is a form of unsupervised learning (UL) in which like in principal component anal-

ysis [PCA; Jolliffe, 1986], the algorithm searches for a set of mappings gi, i ∈ N
from data x ∈ R I , I ∈ N to output components yi = gi(x),y ∈ R J , J ∈ N that are

separate from each other in some sense and express information that is in some

sense relevant. In SFA the features are separated via mutual decorrelation of their

outputs, while relevance is defined as minimal but nonzero change over time (slow-

ness). Ordering the functions g1, g2, ..., gI by slowness, we can discard all but the

J < I slowest, getting rid of irrelevant information such as quickly changing noise

assumed to be useless. See Fig. 2.1 for a visual example of the meaning of a slow

feature.

SFA-based UL learns instantaneous features from sequential data [Hinton, 1989;

Wiskott and Sejnowski, 2002; Doersch et al., 2010]. Relevance cannot be uncovered

without taking time into account, but once it is known, each input frame in most

cases can be encoded on its own. Due to this, SFA differs from both (1) many well-

7
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(a) (b) (c)
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Temporal to spatial

transformation

SF1

SF2Apply learned 

features

1

23

4

?

?
?

?

Figure 2.1. A toy example to explain what a slow feature is. (A) Consider a zero-mean

input signal that spatially resembles white noise. Input points (the black dots) are

drawn from within the gray circle area. Linear spatial feature extractors (such as PCA)

will not prefer any direction over any other (since for PCA the variance in all directions

is the same). (B) If we recode the data in terms of how it changes between subsequent

time instants, certain directions can be more informative than others. Here, the arrows

show a short representative sequence of input. All difference vectors (not just the four

shown) create the space shown in (C). In this space, the second principal component,

or the minor component — gives the direction of the slowest change (the slowest

feature SF1). While, the first principal component gives the direction of the quickest

change (SF2).

known unsupervised feature extractors [Abut, 1990; Jolliffe, 1986; Comon, 1994;

Lee and Seung, 1999; Kohonen, 2001; Hinton, 2002] that ignore dynamics, and

(2) other UL systems that both learn and apply features to sequences [Schmidhu-

ber, 1992a,c,b; Lindstädt, 1993; Klapper-Rybicka et al., 2001; Jenkins and Matarić,

2004; Lee et al.; Gisslén et al., 2011], thereby assuming that the state of the system

itself can depend on past information.

The compact relevant encodings uncovered by SFA reduce the search space

for downstream goal-directed learning procedures [Schmidhuber, 1999b; Barlow,

2001], especially reinforcement learning. As an example, consider a robot sensing

with an onboard camera. Reinforcement learning algorithms applied directly to pix-

els can be quite inefficient due to the size of the search space. Slow features can

encode each image into a small set of useful state variables, and the robot can use

these few state variables to quickly develop useful control policies. The state vari-

ables from SFA are approximations of low-order eigenvectors of the graph Lapla-

cian [Sprekeler, 2011], i.e., proto-value functions [Mahadevan and Maggioni, 2007].

This is why they are typically more useful as features in reinforcement learning in

comparison with other types of features, such as principal components.
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2.1.1 Formulation

SFA optimizes the following formal problem [Wiskott and Sejnowski, 2002]: given

an I-dimensional sequential input signal x(t) = [x1(t), ..., x I(t)]
T , find a set of

J instantaneous real-valued functions g(x) = [g1(x), ..., gJ(x)]
T , which together

generate a J-dimensional output signal y(t) = [y1(t), ..., yJ(t)]
T with y j(t) :=

g j(x(t)), such that for each j ∈ {1, ..., J}

∆ j :=∆(y j) := 〈 ẏ2
j
〉 is minimal (2.1)

under the constraints

〈y j〉 = 0 (zero mean), (2.2)

〈y2
j
〉 = 1 (unit variance), (2.3)

∀i < j : 〈yi y j〉 = 0 (decorrelation and order), (2.4)

with 〈·〉 and ẏ indicating temporal averaging and the derivative of y , respectively.

The problem is to find instantaneous functions g j that generate different output

signals varying as slowly as possible. The constraints (2.2) and (2.3) together avoid

a trivial constant output solution. The decorrelation constraint (2.4) ensures that

different functions g j do not code for the same features.

2.1.2 Solution

Solving this learning problem requires variational calculus and is in general difficult

to solve [Franzius et al., 2007]. But a linear-approximate solution to the problem can

be found through a simpler eigenvector approach. If the g j are linear combinations

of a finite set of nonlinear functions h, then

y j(t) = g j(x(t)) =wT
j

h(x(t)) =wT
j

z(t), (2.5)

and the SFA problem now becomes how to find weight vectors w j to minimize the

rate of change of the output variables,

∆(y j) = 〈 ẏ2
j
〉=wT

j
〈żżT 〉 w j, (2.6)

subject to the constraints (2-4). The slow feature learning problem has become linear

on the derivative signal ż.

If the functions of h are chosen such that z has identity covariance matrix and

zero mean, the three constraints will be fulfilled if and only if the weight vectors w j

are orthonormal. Eq. 2.6 will be minimized, and the orthonormal constraint satisfied,
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with the set of J normed eigenvectors of 〈żżT 〉 with the J smallest eigenvalues (for

any J ≤ I).

The batch SFA (BSFA) technique implements this solution by using batch PCA

twice. Referring back to Eq. 2.6, to select h appropriately, a well-known process

called whitening (or sphering) is used to map x to a z with zero mean and iden-

tity covariance matrix, thus decorrelating signal components and scaling them such

that there is unit variance along each principal component (PC) direction. Whiten-

ing serves as a bandwidth normalization, so that slowness can truly be measured

(slower change will not simply be due to a low variance direction). Whitening re-

quires the PCs of the input signal (PCA #1). The orthonormal basis that minimizes

the rate of output change are the minor components – principal components with

smallest eigenvalues – in the derivative space. So, another PCA (#2) on ż yields the

slow features (eigenvectors) and their order (via eigenvalues). In Chapter 3, I will

present an alternative incremental solution that avoids the computation of the costly

covariance matrices required by the batch PCAs.

2.2 Reinforcement Learning

Agent

Environment

State Reward Action
st rt+1 at

Figure 2.2. Agent-environment interactions in reinforcement learning.

In this section, I will present a brief overview of the relevant topics in rein-

forcement learning [RL; Kaelbling et al., 1996; Sutton and Barto, 1998]. For a more

comprehensive review, refer to the books by Sutton and Barto [1998] and Szepesvári

[2010]. The reinforcement learning problem is summarized in Figure 2.2. An agent

interacts with its environment at each time t by first observing the current state st
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followed by taking an action at . For each action taken, it collects a real-valued re-

ward rt+1 as an outcome. The goal of the agent is to maximize the accumulation of

rewards received over time. RL has been formally studied under the framework of

Markov Decision Processes (MDPs).

2.2.1 Markov Decision Process

A Markov Decision Process for the reinforcement learning problem is defined as a

5-tuple (S ,A ,P ,R ,γ). Each element of this tuple is described as follows. An

agent is in an environment that has a finite state space S . At each state s ∈ S , the

agent carries out an action a ∈ A and transitions to a new state s′ ∈ S according

to a transition model defined as a probability mass function P : S ×A ×S →
[0, 1], such that

∑

s′∈S
P (s′|s, a) = 1. R : S ×A × S → R is the reward model

that defines the task of the reinforcement learning problem and γ represents the

discount factor based on which future reward values are discounted. The defining

characteristic of an MDP is that the environment and the task defined by R has

the Markov property, which is stated as follows [Sutton and Barto, 1998]: ∀s′, st ∈
S , at ∈A the following equality holds

Pr{st+1 = s′, rt+1 = r | st , at , rt , ..., r1, s0, a0}= Pr{st+1 = s′, rt+1 = r | st , at} (2.7)

where Pr denotes the probability distribution. The Markov property guarantees that

the best policy for selecting actions as a function of a state is the same as a function

of complete histories of states. The policy π can be defined as a state dependent

probability mass function π : S ×A → [0, 1], such that
∑

a∈A
π(s, a) = 1.

2.2.2 Bellman Equation

While the reward function determines what is good in the immediate sense, a value

function represents whether a particular state is valuable in the long run, w.r.t achiev-

ing the goal of the RL problem. In other words, the value of a state V (s) is equal

to the total amount of reward the agent can expect to accumulate over the future,

starting from the state s.

Reinforcement learning can be broadly divided into prediction and control prob-

lems. The goal of the prediction problem is to find the value-function for a given

policy. This is also called policy evaluation. While following a policy π, the value
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function serves as a prediction for rewards in the future:

Vπ(s) = Eπ

(
∞∑

k=0

γkrt+k+1

����� st = s

)
, ∀s ∈ S , (2.8)

where Eπ denotes the expected value given the agent follows the policy π. Eq. 2.8

can be expressed as a recursive equation, called the Bellman equation for Vπ:

Vπ(s) =
∑

a

π(s, a)
∑

s′∈S
P (s, a, s′)[R(s, a, s′) + γVπ(s′)], ∀s ∈ S . (2.9)

If the dynamics of the environment (transition-probability function P and reward-

function R) are completely known, then the value function Vπ is a unique solution

to its Bellman equation and can be found using iterative policy evaluation: The

right-hand side of the Eq. 2.9 can be interpreted as a mathematical contraction-

operator [Bertsekas and Tsitsiklis, 1995] called the Bellman operator Tπ, which

maps a value-function to another value-function. Starting with some initial V , due

to Banach’s fixed point theorem, Eq. 2.9 converges to Vπ upon repeatedly applying

the Bellman operator.

The goal of the control problem is to optimize the value-function by finding

an optimal policy. The optimal policy can be found using policy iteration: Upon

determining the value function Vπ for an arbitrary policy π, the policy is improved

to π′ by choosing actions that lead to states with the highest values. The new policy

π′ is then evaluated and further improved in an iterative manner

π0

E−→ Vπ0
I−→ π1

E−→ Vπ1
I−→ π2

E−→ ...
I−→ π∗ E−→ V ∗, (2.10)

where
E−→ denotes a policy evaluation and

I−→ denotes a policy improvement.

The policy-evaluation step (Eq. 2.9) in the policy iteration requires multiple

sweeps through the state-set. The value iteration algorithm truncates the policy-

evaluation step and combines it with the policy improvement into a recursive equa-

tion as follows:

V (s)←max
a∈A

 ∑

s′∈S
P (s, a, s′)[R(s, a, s′) + γV (s′)]

!
, ∀s ∈ S . (2.11)

The optimal value function V ∗(s) can be then found by applying the iterative policy

evaluation technique and the optimal policy π∗ chooses actions that always lead to
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states with the highest value:

V ∗(s) =max
a∈A

 ∑

s′∈S
P (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

!
, ∀s ∈ S , (2.12)

π∗(s) = argmax
a∈A

 ∑

s′∈S
P (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

!
, ∀s ∈ S . (2.13)

For control with finite action spaces, action values are often used. The action-

value function is defined as Q : S ×A → R, which represents whether a particular

(s, a) tuple is valuable in the long run. Formally,

Qπ(s, a) = Eπ

(
∞∑

k=0

γkrt+k+1

����� st = s, at = a

)
(2.14)

=
∑

s′∈S
P (s, a, s′)[R(s, a, s′) + γVπ(s′)], ∀s ∈ S , a ∈A . (2.15)

The optimal action-value function and policy are given by:

Q∗(s, a) =
∑

s′∈S
P (s, a, s′)[R(s, a, s′) + γmax

a′
Q∗(s′, a′)], ∀s ∈ S , a ∈A , (2.16)

π∗(s) = argmax
a∈A

Q∗(s, a), ∀s ∈ S . (2.17)

2.2.3 Temporal Difference Learning

Value iteration is a model-based approach where the transition model P and the re-

ward modelR are known. However, in practice the transition and reward models are

generally unknown. Temporal Difference (TD) learning methods enable reinforce-

ment learning in model-free settings, where no explicit knowledge of the environ-

ment model is required. By just using the transition samples (st , at , rt+1, st+1) gen-

erated by a policy, TD methods that estimate the value function, in most cases (such

as table-based and linear function approximation, see [Sutton and Barto, 1998]) are

guaranteed to converge to Vπ. The simplest TD method, known as TD(0), is

V (st)← V (st) +α[rt+1+ γV (st+1)− V (st)]. (2.18)

For control, TD methods use policy iteration and fall into two main classes: on-

policy and off-policy. On-policy methods, such as SARSA (see Chapter 6 Section

4 of the book by Sutton and Barto [1998]), attempt to evaluate and improve the
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policy that is used to make decisions. An example update equation for action-value

function using SARSA is as follows:

Q(st , at)←Q(st , at) +α
�

rt+1+ γQ(st+1, at+1)−Q(st , at)
�

, (2.19)

where 0 < α < 1 is a learning rate that decreases over time. Balancing exploration

and exploitation becomes very important here and an ε-greedy strategy [Sutton and

Barto, 1998] is popularly used where the agent mostly chooses actions that maxi-

mize expected action values but occasionally chooses a random action with proba-

bility ε.

On the other hand, off-policy methods, such as Q-Learning (see Chapter 6 Sec-

tion 5 of the book by Sutton and Barto [1998]), use a policy to generate behavior

(often called a behavior policy) that may be unrelated to the policy that is evalu-

ated and improved (often called target policy). An example update equation for

action-value function using Q-Learning is as follows:

Q(st , at)←Q(st , at) +α

�
rt+1+ γmax

a
Q(st+1, a)−Q(st , at)

�
. (2.20)

An advantage of the off-policy methods is that the target-policy may be deterministic

while following a stochastic behavior policy.

Approximate Temporal Difference Learning

We have assumed thus far that the value functions (V or Q) can be represented in an

appropriate way, for example, in the form of a table. However, when dealing with

high-dimensional state spaces, table-based representations become infeasible and

they do not generalize to unseen transition samples. This problem is alleviated by

representing value functions using function approximators, such as linear functions

or artificial neural networks. Linear function approximators are popularly used,

since they are easy to implement and there exist convergence guarantees for TD

methods using them [Tsitsiklis and Roy, 1997]. A few examples are: least squares

temporal difference [LSTD; Bradtke and Barto, 1996] for prediction problems and

least squares policy iteration [LSPI; Lagoudakis and Parr, 2003] for control. Least

squares methods make efficient use of data as compared to the conventional TD

methods.

I use LSPI in my work, so I will present a few more details on the algorithm.

LSPI is an off-policy algorithm that combines the efficient computation of the action-

value function of a fixed policy (LSTDQ) and the policy iteration. The action-value

function Qπ(s, a) is approximated (bQπ(s, a; w)) by linear parametric combinations
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of k fixed basis functions (features) and w free parameters:

bQπ(s, a; w) =

k∑

j=1

ψ j(s, a)w j (2.21)

The basis functions are generally required to have compact descriptions, be linearly

independent and have k≪ |S ||A |. Popularly used basis functions are polynomials,

radial basis functions and proto-value functions [Mahadevan and Maggioni, 2007].

Given the environment model, the parameters w for a given policy can be found

analytically:

wπ =
�
ΨT (Ψ− γPΠΨ)

�−1
ΨT R, (2.22)

where Ψ denotes the basis function matrix, P is a matrix that contains the transition

model of the process (P((s, a), s′) =P (s, a, s′)), R is the reward vector and Π is a

matrix that describes the policy π: Π(s′, (s′, a′)) = π(a′; s′).

In the absence of the environment model (P, R), the terms A= ΨT (Ψ− γPΠΨ)

and b = ΨT R can be approximated using the transition samples (s, a, r, s′) via the

following update rules:

bA← bA+ψ(s, a)(ψ(s, a)T − γψ(s′,π(s′))T ) and bb← bb+ψ(s, a)r.

The policy improvement in LSPI is carried out by:

πt+1(s, w) = arg max
a

bQ(s, a; w) = argmax
a

ψ(s, a)T w. (2.23)

It has been shown that LSPI is a stable algorithm [Lagoudakis and Parr, 2003].

Chapters 4 and 5 present more details on how LSPI can be used to learn behaviors

for a humanoid robot.

2.3 Theory of Artificial Curiosity

Here I present a brief overview of the theory of Artificial Curiosity [AC; Schmid-

huber, 2006a, 2010a]. The theory of AC mathematically formalizes driving forces

and value functions behind all kinds of curious and creative behavior. Consider an

agent living in an initially unknown environment. At any given time, it uses one

of the many reinforcement learning (RL) methods [Kaelbling et al., 1996] to max-

imize not only expected future external reward for achieving certain goals, such as

avoiding hunger, empty batteries, obstacles etc., but also intrinsic reward for action
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Agent

Environment

State External Reward Action
st rt+1 at

Model
(predictor/compressor)

(rt+1 + rt+1)
int

Curiosity + Ext. Reward

st at 

Figure 2.3. Agent-environment interactions in Curiosity-driven reinforcement learning.

sequences that improve an internal model of the environmental responses to its ac-

tions (see Figure 2.3). Such an agent continually learns to better predict, explain or

compress the growing history of observations influenced by its experiments, actively

influencing the input stream such that it contains previously unknown but learnable

algorithmic regularities that become known and boring once there is no additional

subjective compression progress or learning progress [Schmidhuber, 1991b; Storck

et al., 1995; Schmidhuber, 1999a, 2010a]. Schmidhuber et al. have argued that the

particular utility functions based on compression progress as described in this the-

ory explain essential aspects of intelligence including selective attention, curiosity,

creativity, science, art, music, humor, e.g., [Schmidhuber, 2006a, 2010a].

Essentially, curiosity-driven agents not only focus on potentially hard-to-solve

externally posed tasks but also creatively invent self-generated tasks that have the

property of currently being still unsolvable but easily learnable given the agent’s

present knowledge, so that the agent is continually motivated to improve its under-

standing of how the world works and what can be done in it. Its growing skill reper-

toire may at some point help to achieve greater external rewards as well [Schmidhu-

ber, 1991b, 1999a, 2010a].
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2.4 Conclusion

With the above briefly discussed topics as a background, the following chapters

present the contributions of this thesis in detail. Firstly, in Chapter 3, I will present

an incremental low-complex implementation of the batch SFA (discussed in Section

2.1), making it feasible to use SFA for online learning applications. I show in Chap-

ter 4 how a curiosity-driven reinforcement learning agent (discussed in Sections

2.2, 2.3) can be partially approximated to achieve an intrinsic goal of compress-

ing and predicting the observation history. SFA is effective at discovering invariant

spatio-temporal properties of the input stream, supporting this goal. Note that any

such invariance must reflect an environmental regularity that allows for better com-

pression of the observed data. Hence a curious, playful robot can be implemented

(Chapter 5) by simply making it wish to learn in order to create additional, still

unknown, SFA-encodable invariances.
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Chapter 3

Incremental Slow Feature Analysis

As discussed in the last chapter slow feature analysis (SFA) captures the invariant

and slowly varying features from input signals and has been successfully applied

in many problems and scenarios. SFA is elegant and sample efficient, but it has

only been applied to data in batches. Therefore, it is not readily applicable to online

learning agents because it estimates the covariance matrices from all data offline. I

present here an incremental version of SFA [IncSFA; Kompella et al., 2011a, 2012a]

that does not need to store any input data or computationally expensive covariance

matrix estimates. This makes it feasible for handling high-dimensional image data

in an online manner.

3.1 Overview

In this section, I will present an overview of the IncSFA algorithm. Like batch SFA

(BSFA), IncSFA employs the eigenvector tactic but uses incremental algorithms

for the two required principal component analysis steps (PCAs; see Section 2.1.2).

Therefore, IncSFA can update existing slow feature estimates on any amount of new

data, even on a single data point x(t).

Figure 3.1 shows the control flow of both BSFA and IncSFA algorithms. IncSFA

replaces the batch PCA algorithms with their incremental alternatives. To replace

PCA #1, IncSFA needs to incrementally whiten the input x. To this end, I use the

state-of-the-art Candid Covariance-Free Incremental PCA [CCIPCA; Weng et al.,

2003]. CCIPCA incrementally updates both the eigenvectors (the principal compo-

nents) and eigenvalues necessary for whitening, and does not keep an estimate of

the covariance matrix. It has been shown that the PCs learned by CCIPCA converge

to the true PCs [Zhang and Weng, 2001]. CCIPCA is optionally used to reduce

dimensionality at this intermediate stage by only computing the K highest-order

19
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Whitening
(CCIPCA) Derivative

Extract Minor 
Components

(CIMCA)
Input

(Sample)

Whitening
(PCA #1) Derivative

Extract Minor 
Components

(PCA #2)
Input

(Batch)

Batch SFA

Incremental SFA

Figure 3.1. Control flow of Batch and Incremental SFA algorithms. IncSFA replaces

the batch PCAs with their incremental alternatives.

eigenvectors.

Except for the low-dimensional derivative signals ż, CCIPCA cannot replace the

second PCA step. It takes a long time to converge to the slow features, since they

correspond to the least significant components. Minor Components Analysis [MCA;

Oja, 1992] incrementally extracts principal components, but with a reversed pref-

erence: it extracts the components with the smallest eigenvalues fastest. I use a

modified version of Peng’s low complexity MCA updating rule [Peng et al., 2007].

Peng proved its convergence even for constant learning rates—good for open-ended

learning. MCA with sequential addition [Chen et al., 2001; Peng and Yi, 2006] will

extract multiple slow features in parallel. In IncSFA, this method is modified to be

covariance-free. A high-level formulation of IncSFA is

(φ(t + 1),V(t + 1)) = IncSFA
�
φ(t),V(t),x(t),θ (t)

�
, (3.1)

where φ(t) =
�
φ1(t), ...,φJ(t)

�
is the matrix of existing slow feature vector esti-

mates for J slow features and V =
�
v1, ...,vK

�
is the matrix of K principal compo-

nent vector estimates used to construct the whitening matrix and for dimensionality-

reduction.1 Here x(t) ∈ R I , I ∈ N is the input observation and θ contains parame-

ters about setting learning rates (See Section3.5.4).

The rest of the chapter is organized as follows. Section 3.2 discusses different

parts of the IncSFA algorithm in detail. Section 3.3 presents the pseudo-code of the

1In general K < I and J < K .
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algorithm along with other implementation details. Section 3.4 presents experimen-

tal results. Section 3.5 discusses the convergence aspects, learning-rates scheduling

and the biological-link of the algorithm. Section 3.6 concludes.

3.2 Method Description

IncSFA algorithm has two learning update rules: Candid-Covariance Free Incremen-

tal Principal Component Analysis (CCIPCA) for normalizing the input and Minor

Component Analysis (MCA) for extracting the slow features. The following sec-

tions discuss these components in turn.

3.2.1 Principal Components for Whitening

Given zero-mean data u = x− E[x], a PC is a normed eigenvector v∗
i

of the data

covariance matrix E[uuT]. An eigenvalue λ∗
i

is the variance of the samples along

v∗
i
. By definition, an eigenvector and eigenvalue satisfy

E[uuT]v∗
i
= λ∗

i
v∗

i
. (3.2)

The set of eigenvectors are orthonormal and ordered such that λ∗
1
≥ λ∗

2
≥ ... ≥ λ∗

K
.

The whitening matrix is generated by multiplying the matrix of principal com-

ponent length-one eigenvectors V∗ by the diagonal matrix D∗, where component

d̂i,i =
1
p
λ∗i

. After whitening via z(t) = D∗V∗T u(t), the data will be normalized in

scale and decorrelated so that the covariance matrix of z will be the identity matrix:

E[zzT] = I .

The procedure to generate a whitening matrix is outlined in Algorithm 1. Via

CCIPCA, the magnitudes of the eigenvector estimates are the eigenvalue estimates.

The method used to generate estimates of (λ∗
i
,v∗

i
) is outlined next.

3.2.2 CCIPCA Updating

CCIPCA updates estimates of eigenvalues and eigenvectors from each sample in or-

der to implement incremental whitening. For inputs ui, the first PC is the expectation

of the normalized response-weighted inputs. Eq 3.2 can be rewritten as

λ∗
i

v∗
i
= E

�
(ui · v∗i ) ui

�
. (3.3)
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Algorithm 1: ConstructWhiteningMatrix(V)

1 V̂←
�

v1

‖v1‖
, ...,

vK

‖vK‖

�
//I × K matrix

2 D← 0 //K × K matrix

3 for i← 1 to K do

4 Di,i = 1/
p
‖vi‖

5 end

6 S← V̂D //I × K matrix

7 return S

Algorithm 2: CCIPCA-Update(V, K ,u,η)

//Candid Covariance-Free Incremental PCA

1 u1 ← u

2 for i← 1 to K do

//Principal component update

3 vi ← (1−η) vi +η

�
ui · vi

‖vi‖
ui

�

//Residual

4 ui+1 = ui −
�

uT
i

vi

‖vi‖

�
vi

‖vi‖
5 end

6 return V

The corresponding incremental updating equation, where λ∗
i
v∗

i
is estimated by vi(t),

is

vi(t) = (1−ηPCA) vi(t − 1) +ηPCA

�
ui(t) · vi(t − 1)

‖vi(t − 1)‖ ui(t)

�
. (3.4)

where 0 < ηPCA < 1 is the learning rate. In other words, both the eigenvector

and eigenvalue of the first PC of ui can be found through the sample mean-type

updating in Eq. 3.3. The estimate of the eigenvalue is given by λi = ‖vi(t)‖. Using

both a learning rate ηPCA and retention rate (1 − ηPCA) automatically makes this

algorithm invariant to the magnitude of the input vectors. Computation of lower-

order principal components, is described next.
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3.2.3 Lower-Order Principal Components

Any component i > 1 not only must satisfy Eq. 3.2 but must also be orthogonal to

the higher-order components. The residual method [Kreyszig, 1988; Sanger, 1989]

generates observations in a complementary space so that lower-order eigenvectors

can be found by the update rule of Eq. 3.4.

Denote ui(t) as the observation for component i. When i = 1, u1(t) = u(t).

When i > 1, ui is a residual vector, which has the “energy” of u(t) from the higher-

order components removed. Solving for the first PC in this residual space solves for

the i-th component overall. To create a residual vector, ui is projected onto vi to get

the energy of ui that vi is responsible for. Then, the energy-weighted vi is subtracted

from ui to obtain ui+1:

ui+1(t) = ui(t)−
�

uT
i
(t)

vi(t)

‖vi(t)‖

�
vi(t)

‖vi(t)‖
. (3.5)

Together, Eqs. 3.4 and 3.5 constitute the CCIPCA technique described in Al-

gorithm 2. We now examine how to extract the slow features from the whitened

data.

3.2.4 MCA Updating

After using CCIPCA components to generate an approximately whitened signal z,

the derivative is approximated by ż(t) = z(t)− z(t − 1). In this derivative space,

the minor components on ż are the slow features.

To find the minor components, Peng’s MCA [Peng et al., 2007] is used. The

updates for MCA are given by

wi(t) = 1.5wi(t − 1)−ηMCA Ci wi(t − 1) (3.6)

−ηMCA [wT
i
(t − 1)wi(t − 1)] wi(t − 1),

where for the first minor component, C1 = ż(t)żT (t).

For other minor components, the sequential addition technique [Chen et al.,

2001] shifts each observation into a space where the minor component of the current

space will be the first PC, and all other PCs are reduced in order by one. Sequential

addition allows IncSFA to extract more than one slow feature in parallel. Sequential

addition updates the matrix Ci, ∀i > 1 as follows:

Ci(t) = Ci−1(t) + γ(t)
�

wi−1(t)w
T
i−1
(t)
�
/
�

wT
i−1
(t)wi−1(t)

�
(3.7)
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Algorithm 3: CIMCA-Update(W, J , ż,γ,η)

//Covariance-Free Incremental MCA

1 l1 ← 0

2 for i← 1 to J do

//Minor component update

3 wi ← (1−η)wi −η
�
(ż ·wi) ż+ li

�
.

//Normalize

4 wi ← wi/‖wi‖.
//Lateral competition from “lower” components

5 li+1 ← γ
∑i

j
(w j ·wi)w j

6 end

7 return W

Note Eq. 3.7 introduces parameter γ, which must be larger than the largest eigen-

value of E[ż(t)żT (t)]. To automatically set γ, the greatest eigenvalue of the deriva-

tive signal is computed through another CCIPCA rule to update only the first PC.

Then, γ = λ1(t) + ε for small ε. Peng’s MCA technique computes costly single

data-point covariance-matrix of the whitened input: C1 = ż(t)żT (t). The next sec-

tion presents a modification to the MCA algorithm to make it covariance free.

3.2.5 Covariance-Free MCA

We can avoid the potentially costly outer products via the same trick that made

CCIPCA covariance-free: (żżT ) wi = (ż · wi)ż. Considering only the first slow

feature for now, Eq. 3.6 can be re-written as:

w1← 1.5w1−ηMCA ż [żT wi]−ηMCA [wT
i
wi] wi, (3.8)

=
�

1.5−ηMCA ‖w1‖2
�

w1−ηMCA (ż ·w1) ż,

as shown in Section 3.5.6.

When dealing with non-stationary input, due to the simultaneously learning

CCIPCA components, it is acceptable2 to normalize the magnitude of the slow fea-

ture vectors: wi ← wi/‖wi‖. Normalization at least ensures non-divergence (see

Section 3.5.1). If we normalize, Eq. 3.8 can be rewritten in an even simpler form

w1← (1−ηMCA)w1−ηMCA(ż ·w1) ż, (3.9)

w1←w1/‖w1‖. (3.10)

2Peng: personal communication.
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Now, for all other slow features i > 1, the update can be written so that the

sequential addition becomes a Gram-Schmidt procedure.

wi ← (1−ηMCA)wi −ηMCA

 
(ż ·wi) ż+ γ

i−1∑

j

(w j ·wi)w j

!
. (3.11)

The covariance-free MCA is outlined in algorithm 3. The above discussed learning

components together constitute the IncSFA algorithm. The resultant slow feature

vectors at any time t is equal to the product of the whitening vectors S(t) and the

minor components W(t): φ(t) = S(t)W(t).

3.3 Pseudocode

Algorithm 4 summarizes Incremental SFA. A Python-based implementation of the

algorithm can be found at the URL: www.idsia.ch/~kompella/codes/

incsfa.html. Matlab code is available atwww.idsia.ch/~luciw/incsfa.

html.

3.4 Experimental Results

In this section, I present results of several experiments conducted on synthetic input

signals and real world images to illuminate the performance of the IncSFA algo-

rithm. These results show that the features extracted by IncSFA closely match the

slow features extracted by the batch SFA (BSFA).

3.4.1 Proof of Concept

As a basic proof of concept, IncSFA is applied to the introductory problem from the

original SFA paper [Wiskott and Sejnowski, 2002] to show that IncSFA can derive

the same set of features as BSFA. The input signal is

x1(t) = sin(t) + cos(11 t)2, (3.12)

x2(t) = cos(11 t), t ∈ [0, 2π]. (3.13)

Both input components vary quickly over time (see Figure 3.2(a)). The slowest

feature hidden in the signal is y1(t) = x1(t)− x2(t)
2 = sin(t). The second slowest

feature is y2(t) = x2(t)
2.

www.idsia.ch/~kompella/codes/incsfa.html
www.idsia.ch/~kompella/codes/incsfa.html
www.idsia.ch/~luciw/incsfa.html
www.idsia.ch/~luciw/incsfa.html
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Algorithm 4: IncSFA(J , K ,θ )

//Incremental update of J slow features from samples

x ∈ R I

//V : K columns: CCIPCA weight vectors

//W : J columns: CIMCA weight vectors

//φ : J columns: SFs

//vγ : First PC in ż-space

//x̄ : Mean of x

1 {V,W,φ,vγ, x̄}← Initialize ()

2 for t← 1 to∞ do

3 x← Sense(worldstate)

4 {ηPCA
t

,ηMCA
t

}← LrnRateSchedule (θ , t)

5 x̄← (1−ηPCA
t
) x̄ +ηPCA

t
x //Update mean

6 u← (x− x̄) //Centering

//Candid Covariance-Free Incremental PCA

7 V← CCIPCA-Update (V, K ,u,ηPCA
t

)

8 S← ConstructWhiteningMatrix (V)

9 If t > 1 then (zprev ← zcur r) //Store prev.

//Whitening and dim. reduction

10 zcur r ← ST u

11 if t > 1 then

12 _z←
�

zcur r − zprev

�
//Approx. derivative

//For seq. addition (γ)

13 vγ ← CCIPCA-Update (vγ, 1,_z,ηPCA
t

)

14 γ← vγ/‖vγ‖
//Covariance-free Incremental MCA

15 W← CIMCA-Update (W, J , ż,γ,ηMCA
t

)

16 end

17 y← zT
curr

W //Slow feature output

18 φ ← SW //Slow features

19 end
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Figure 3.2. Extracting slow features incrementally from a simple non-linear input sig-

nal. (a) Input Signal (b) Output root mean square error (RMSE) plot showing conver-

gence of the first three IncSFA features to the corresponding BSFA features. (c) BSFA

output of the first slow feature (d)-(f) IncSFA output of feature 1 at t = 2, 5, 10 epochs.

(g) BSFA output of the second slow feature (h)-(j) IncSFA output of feature 2 at t = 2,

5, 10 epochs. IncSFA performs like BSFA, as expected.

Each epoch contains a total of 2, 000 discrete datapoints, over the entire range

of t, which are used for learning. A quadratic input expansion is done. A learning

rate of ηMCA = 0.08 is used.

Both BSFA and IncSFA extract the slow features. Figure 3.2(b) shows the Root

Mean Square Error (RMSE) of three IncSFA feature outputs compared to the corre-

sponding BSFA outputs over multiple epochs of training, showing that the IncSFA

features converge to the correct ones. Figures 3.2(c) and (g) show feature outputs

of BSFA, and (to the right) IncSFA outputs at 2, 5, and 10 epochs. Figures 3.2(g)-

(j) show this comparison for the second feature. This basic result shows that it is

indeed possible to extract multiple slow features in an online way without storing

covariance matrices.

3.4.2 Feature Adaptation to a Changing Environment

The purpose of this experiment is to illustrate how IncSFA’s features adapt to an

unpredicted sudden shift in the input process. The input used is the same signal as

in Experiment #1, but broken into two partitions. At epoch 60, the two input lines

x1 and x2 are switched such that the x1 signal suddenly carries what x2 used to, and

vice versa. IncSFA can first learn the slow features in the first partition, then is able
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Figure 3.3. (a) RMSE of IncSFA’s first two output functions with respect to the true

functions for original signal (epochs 1-59), and switched signal (epochs 60-120). (b)

Normalized similarity (direction cosine) of the first slow feature to the true first slow

feature of the current process, over 25 independent runs. (c) Normalized similarity of

the second incremental slow feature.

to adapt to learn the slow features in the second partition.

Here, the signal is sampled 500 times per epoch. The CCIPCA learning rate

parameters, also used to set the learning rate of the input average x̄, were set to

t1 = 20, t2 = 200, c = 4, r = 5000 (See Section3.5.4). The MCA learning rate is a

constant ηmca = 0.01.
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Figure 3.4. Outputs of first two slow features, from epoch 59 through 61, extracted by

BSFA over the input sequence.

Results of IncSFA are shown in Figure 3.3, demonstrating successful adaptation.

To measure convergence accuracy, the direction cosine [Chatterjee et al., 2000] be-

tween the estimated feature w(t) and true (unit length) feature w∗ is used,
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Direct ionCosine(t) =
|wT (t) ·w∗|
‖wT (t)‖ · ‖w∗‖ . (3.14)

The direction cosine equals one when the directions align (the feature is correct) and

zero when they are orthogonal.

BSFA results are shown in Figure 3.4. The first batch slow feature somewhat

catches the meta-dynamics and could actually be used to roughly sense the signal

switch. However, the dynamics within each partition are not extracted. The BSFA

result might be improved by generating embedding-vector time series [Wiskott,

2003] and increasing the non-linear expansion. But due to long duration of the

signals and the unpredicted nature of the signal switch, time-embedding with a

fixed delay might not be able to recover the dynamics appreciably. This experiment

demonstrated that IncSFA, unlike BSFA, is adaptive to the changing input statistics.

3.4.3 Recovery from Outliers
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Figure 3.5. First output signals of IncSFA and BSFA on the simple signal with a single

outlier.

Next, the effect of a single extreme outlier on both BSFA and IncSFA is shown.

Again, the learning rate setup and basic signal from the previous experiments are

used, with 500 samples per epoch, over 150 epochs. A single outlier point is inserted

at time 100, only in the first epoch: x1(100) = x2(100) = 2000.

Figure 3.5 shows the first output signal of BSFA and IncSFA. The one outlier

point at time 100 (out of 75,000) is enough to corrupt the first feature of BSFA,

whereas IncSFA recovers. It is possible to include clipping [Franzius et al., 2007]

in BSFA, so that the effect of the outliers that have different variance statistics com-

pared to the signal can be overcome.

Outliers that are generated from another signal source lying within the variance

of the main signal can affect the BSFA output in a different way. I refer to a real-

world experiment [Kompella et al., 2011b], using AutoIncSFA (where the input to
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IncSFA is the output at a bottleneck layer of an autoencoder neural net — for image

compression) on an image sequence, in which a person moves back and forth in

front of a stable camera. At only one point in the training sequence, a door in the

background is opened. The BSFA hierarchical network’s first slow feature became

sensitive to this event. Yet, the AutoIncSFA network’s first slow feature encodes the

relative distance of the moving interactor.

3.4.4 High-Dimensional Video with Linear IncSFA
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Figure 3.6. (a) Stream of 90 41× 41× 3 images as the agent completes one rotation

(360 degrees). There are 10 subsequent images per row, starting from the top-left.

The image after that at the far right of a row starts at the far left of the lower row. (b)

All 90 images (noise-free) projected onto the first three features learned by IncSFA.

We can easily see the 1D and circular nature of the agent’s movement within the

environment. This embedding can be used as a compact encoding of the agent’s

state.

IncSFA makes it possible to use SFA in high-dimensional video processing ap-

plications without using deep receptive-field based networks. CCIPCA provides an

intermediate dimensionality reduction, which, when low enough compared to the

input dimension, can greatly reduce the computational and space complexities as

well as the search space for the slow features via MCA.

As a first experiment to show this, SFs are extracted from a rotating vision-

based agent in a square room. The room has four complex-textured walls. See

Figure 3.6(a). Each image is dimension 41× 41× 3.
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In each episode3, starting from a different orientation, the agent rotates slowly

(4 degree shifts from one image to the next) by 360 degrees, each episode. At any

time, a slight amount of Gaussian noise is added to the image (σ = 8).

Each 5, 043 dimensional image is fed into a linear IncSFA directly. Only the

40 most significant principal components are computed by CCIPCA, using learn-

ing rate parameters t1 = 20, t2 = 200, c = 4, r = 5000 (See Section 3.5.4).

Computation of the covariance matrix and its full eigendecomposition (over 5000

eigenvectors and eigenvalues) is therefore avoided. On the 40 dimensional whitened

difference signal, only the first 5 slow features are computed via CIMCA.

Computation of 500 epochs through the data took approximately 15 minutes

using Matlab on a machine with an Intel i3 CPU and 4 GB RAM. This corresponds

to a framerate of about 50fps.

The result of projecting the (noise-free) data onto the first three slow features is

shown in Figure 3.6(b). A single linear IncSFA has incrementally compressed this

high-dimensional noisy sequence to a nearly unambiguous compact form, learning

to ignore the details at the pixel level and attend to the true cyclical nature underlying

the image sequence. A few subsequences have somewhat ambiguous encodings,

probably because certain images associated with slightly different angles are similar.

This experiment demonstrated that the IncSFA algorithm scales to high-dimensional

image inputs.

3.4.5 iCub Experiment

Here, I conduct an experiment with real high-dimensional vision sequences gener-

ated from the camera-eyes of an exploring iCub [Metta et al., 2008] humanoid robot.

Two plastic cups are placed in the iCub robot’s field of view. The robot performs

motor babbling in one joint of its right arm, using a movement paradigm used by

Franzius et al. [2007]. During the course of babbling, it happens to topple both cups

in one of two possible orders. The episode ends a few frames after it has knocked

both down. A new episode begins with the cups upright again and the arm in the

beginning position. A total of 50 separate episodes were recorded and the images

used as training data.

IncSFA updates from each 80× 60 (grayscale) image. Only the 20 most signif-

icant principal components are computed by CCIPCA, using learning rate param-

3IncSFA can be readily extended to episodic tasks, with a minor modification:

The derivative signal, which is computed as a difference over a single time step, is

simply not computed for the starting sample of each episode. The first data point in

each episode is used for updating the PCs, but not the slow feature vectors.
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Figure 3.7. Experimental result of IncSFA on episodes where the iCub knocks down

two cups via motor babbling on one joint. Upper left: The average slowness of the five

features at each episode. Upper right: after training, several episodes (each episode

is an image sequence where the cups are eventually both knocked down) are embed-

ded in the space spanned by the first two PCs. Lower right: the same episodes are

embedded in the space spanned by the first two slow features. I show some example

images and where they lie in the embedding. The cluster in the upper right (A) repre-

sents when both cups are upright. When the robot knocks down the blue cup first, it

moves to the cluster in the upper left (B1). If it instead knocks down the brown cup, it

moves to the lower right cluster (B2). Once it knocks down both cups, it moves to the

lower left area (C).

eters t1 = 20, t2 = 200, c = 2, r = 10000 (See Section3.5.4). Only the first 5

slow features are computed via CIMCA with learning rate 0.001. The MCA vec-

tors are normalized after each update during the first 10 episodes, but not thereafter

(for faster convergence). The algorithm runs for 400 randomly-selected (of the 50

possible) episodes. The experiment is replicated 25 times.
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Figure 3.8. Average slow feature similarity over episodes in the iCub experiment.

Results are shown in Figure 3.7. The slowness of the feature outputs is mea-

sured on three “testing” episodes after each episode of training. The upper left plot

shows that all five features get slower as they are trained over the 400 episodes.

Figure 3.8 shows the average mutual direction cosine between non-identical pairs of

slow features, and we can see the features quickly become nearly decorrelated.

After training completes, the images are embedded in a lower dimension us-

ing the learned features. The embedding of trajectories of 20 different episodes

are shown with respect to the first two PCs as well as the first two slow features.

Since the cups being toppled or upright are the slow events in the scene, IncSFA’s

encoding is keyed on the object’s state (toppled or upright). PCA does not find

such an encoding, being much more sensitive to the arm. Such clear object-specific

low-dimensional encoding, invariant to the robot’s arm position, is useful, greatly

facilitating training of a subsequent regressor or reinforcement learner.4

3.4.6 Hierarchical IncSFA

Deep networks composed of multiple stacked SFA nodes, each sensitive to only a

small part of the input (i.e., receptive fields), are typically used for SFA processing

of high-dimensional images. The slow features are linear combinations of the input

space components. Since there is no guarantee the useful information is linear in the

original sensory space, an expanded space is often used. For example, a quadratic

expansion adds all combinations of input components, or a cubic expansion adds

all triples. But the degree of expansion required to construct a space where the “in-

teresting information” will be some linear combination may increase the dimension

4A video of the experimental result can be found at http://www.idsia.ch/~luciw/

IncSFAArm/IncSFAArm.html.

http://www.idsia.ch/~luciw/IncSFAArm/IncSFAArm.html
http://www.idsia.ch/~luciw/IncSFAArm/IncSFAArm.html
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Figure 3.9. Example Hierarchical-IncSFA Architecture. This also shows the structure

of an IncSFA node, which contains a linear IncSFA unit followed by nonlinear expan-

sion followed by another linear IncSFA unit.

intractably. To deal with these cases, one can use multilayer, receptive-field based

networks [Wiskott and Sejnowski, 2002; Franzius et al., 2007], which reduce the

complexity for any SFA module by partitioning spatially on each layer into recep-

tive fields while having a low-order (e.g., quadratic) expansion within each receptive

field. A succession of low-order expansions over multiple layers lead to an overall

expansion which is high-order.

The utility of IncSFA is tested in this network context. Hierarchical networks

introduce new parameters (receptive field size, number of layers, etc.) that can be

difficult to tune. There is another applicable tactic, that is, to apply IncSFA mono-

lithically to the (possibly even expanded) high-dimensional input, extracting K << I

principle components with CCIPCA and J slow features. But IncSFA can also be

used within a deep network architecture.

Figure 3.9 shows an example deep network, motivated by the human visual sys-

tem and based on the one specified by Franzius et al. [2007]. The network is made

up of a converging hierarchy of layers of IncSFA nodes, with overlapping rectan-

gular receptive fields. Each IncSFA node finds the slowest output features from its

input within the subspace of quadratically expanded inputs.

Input images come from a high-dimensional video stream generated by the iCub

simulator [V. Tikhanoff and Nori, 2008], an OpenGL-based software simulator specif-
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Figure 3.10. (a) Experimental Setup: iCub Simulator (b) Sample image from the input

dataset (c) BSFA output (d) IncSFA output (ηmca = 0.005)

ically built for the iCub robot. This experiment mimics the robot observing a moving

interactor agent, which in the simulation takes the form of a rectangular flat board

moving back and forth in depth over the range {1, 3} (meters) in front of the robot.

This movement paradigm was developed by Franzius et al. [2007]. Figure 3.10(a)

shows the experimental setup in the iCub simulator. Figure 3.10(b) shows a sample

image from the dataset. 20, 000 monocular images are captured from the robot’s

left eye and downsampled to 83×100 pixels (input dimension of 8, 300).

A three-layer IncSFA network is used to encode the images. Each SFA node

operates on a spatial receptive field of the layer below. The first layer uses 15× 19

nodes, each with 10× 10 image patch receptive field and a 5 pixel overlap. Each

node on this layer develops 10 slow features. The second layer uses 4× 5 nodes,

each having a 5× 5 receptive field, and developing 5 slow features. The third layer

uses two nodes, one sensitive to the top half, the other sensitive to the bottom half

(5 slow features). The forth layer uses a single node and a single slow feature.

The network is trained layer-wise from bottom to top, with the lower layers frozen

once a new layer begins its training. The CCIPCA output of all nodes is clipped
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to [−5, 5], to avoid any outliers that may arise due to close-to-zero eigenvalues in

some of the receptive fields that contain unchanging stimuli. Each IncSFA node is

trained individually, that is, there is no weight sharing among nodes.

For comparison, a BSFA hierarchical network was also trained on this data. Fig-

ures 3.10 show BSFA and IncSFA outputs. The expected output takes the form of a

sinusoid extending over the range of board positions. IncSFA gives a slightly noisy

output, probably due to the constant dimensionality reduction value for all units in

each layer of the network, selected to maintain a consistent input structure for the

subsequent layer; hence some units with eigenvectors corresponding to very small

eigenvalues emerge in the first stage, with receptive fields observing comparatively

few input changes, thus slightly corrupting the whitening result, and adding small

fluctuations to the overall result.

Finally, how well the IncSFA feature codes for distance is evaluated. A super-

vised quadratic regressor is trained with ground truth labels on 20% of the dataset,

and tested on the other 80%, to measure the quality of features for some classifier or

reinforcement learner using them. The RMSE was found to be equal to 0.043 me-

ters. This experiment demonstrated the application of IncSFA algorithm in a deep

hierarchical network to extract high-degrees of non-linearities in the inputs.

3.5 Supplementary Topics

In this section, I will discuss the convergence aspects of the IncSFA algorithm along

with a guide to setting the learning rates and its link to the biological systems.

3.5.1 On Non-Divergence and Convergence

For CCIPCA; if the standard conditions on learning rate hold [Papoulis et al., 1965]

(including convergence at zero), the first stage components will converge to the true

PCs, leading to a “nearly-correct” whitening matrix in reasonable time. Thus if the

input x is stationary, the slow feature estimates are likely to grow close to the true

slow features in a reasonable amount of updates.

In open-ended learning, convergence is usually not desired. Yet by using a learn-

ing rate that is always nonzero, the stability of the algorithm is reduced. This corre-

sponds to the well-known stability-plasticity dilemma [Grossberg, 1980].

For stability and convergence of incremental MCA, the following constraints

must be satisfied [Peng et al., 2007],

ηMCAλ∗
1
< 0.5, ||w(0)||2 ≤

1

2ηMCA
, wT (0)w∗ 6= 0 (3.15)
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where w(0) is the initial feature estimate, w∗ the true eigenvector associated with

the smallest eigenvalue, and λ∗
1

the largest eigenvalue. In other words, the learning

rate must not be too large, and the initial estimate must not be orthogonal to the true

component.

It is clear that if whitened signal z is drawn from a stationary distribution, the

MCA convergence proof [Peng et al., 2007] applies. But typically the whitening

matrix is being learned simultaneously. In this early stage, while the CCIPCA vec-

tors are learning, care must be taken to ensure that the slow feature estimates will

not diverge.

Peng showed that for any initial vector w(0) within the set S given by

S =
¨

w(t)

����w(t) ∈ R
K and ‖w(t)‖2 ≤

1

2ηMCA

«
, (3.16)

w(t) (∀t ≥ 0) will remain in S throughout the dynamics of the MCA updating.

Thus, ‖w‖ must be prevented from getting too large until the whitening matrix is

close to accurate. With respect to lower-order slow features, there is additional

dependence on the sequential addition technique, parameterized by γ(t) = λ1(t)+ε.

This γ(t) also needs time to estimate a close value to the first eigenvalue λ1. Before

these estimates become reasonably accurate, the input can knock the vector out of

S .

In IncSFA, w is normalized after each update. If ‖w(0)‖ = 1 then any learning

rate ηmca ≤ 0.5 ensures non-divergence.

Even if w remains in S , the additional constraint wT (0)w∗ 6= 0 is needed for

convergence. But this is an easy condition to meet, as it is unlikely that any w(t)

will be exactly orthogonal to the true feature. In practice, it may be advisable to add

a small amount of noise to the MCA update. But I did not find this to be necessary

in experiments.

3.5.2 Intermediate dimensionality reduction

Since often only a relatively small number of principal components of x are needed

to explain most of the variance in the data, the other components do not even have

to be estimated. With IncSFA, dimensionality reduction can be done during PC

estimation, and no time needs to be wasted on computing insignificant lower-order

PCs. The whitening output dimension K must be set by hand5. However, some prior

problem knowledge seems necessary: the insignificant lower-order PCs may contain

5For example, one might set K such that 95% of the estimated total data variance

is kept.
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Algorithm 5: LearningRateSchedule(θ , t)

//Example Learning Rate Schedule

//θ = (t1, t2, c, r,ηl ,ηh, T )

//example: t1 = 20, t2 = 200, c = 3, r = 2000

1 µt =





0 if t ≤ t1,

c(t − t1)/(t2− t1) if t1 < t ≤ t2,

c + (t − t2)/r if t2 < t.

2 ηPCA
t
← (1+µt)/t

3 ηMCA
t
= ηMCA.

4 return {ηPCA
t

,ηMCA
t

}

data corresponding to the slowest varying signal in the input. It would be unwise to

remove them in this case, since discarding these might eliminate an important slow

feature.

3.5.3 On complexity

From the algorithm, it can be seen that IncSFA complexity with respect to input

dimension is O(I). With respect to the K eigenvectors after the CCIPCA step, and

J slow feature eigenvectors, every IncSFA update is of complexity O(K + J2). The

quadratic complexity on J is due to the Gram-Schmidt procedure in the CIMCA al-

gorithm. CCIPCA uses the residual method, which has linear complexity. Typically,

J < K and K < I , so the quadratic complexity on J should not make the computation

inefficient. One must choose K and J and set a learning rate schedule. A discussion

on setting learning rates is next.

3.5.4 Learning Rate Scheduling

The methods used to schedule the learning rates ηPCA and ηMCA are presented in

Algorithm 5. There are certainly many other ways to set the learning rates.

Pseudo-optimality

For CCIPCA, the learning rate schedule is based around the optimal ηPCA
t
= 1

t
. If we

use 1/t, Eq. 3.4 will be the most efficient estimator of the principal component. The

most efficient estimator on average requires the least samples for learning (among

all unbiased estimators). For several common distribution types, e.g., Gaussian, the
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sample mean is the maximum likelihood estimator of the population mean. And

observe that Eq. 3.4 reformulates the eigenvector estimation problem as a mean

estimation problem. Therefore, Eq. 3.4 and learning rate 1/t has a spatiotemporal

optimality: at any t the estimate is expected to be the best as compared to any other

unbiased estimator.

Learning rate 1/t is only spatiotemporally optimal if every sample from t =

1, 2, ...,∞ is drawn from the same distribution, which will not be the case for the

lower-order components, and in general for autonomous agents. I use an amnesic

averaging technique, where the influence of old samples on the current estimates

diminish over time. The three-sectioned amnesic averaging function µ is shown in

the algorithm. It uses three stages, defined by points t1 and t2. In the first stage, the

learning rate is 1

t
. In the second, the learning rate is scaled by c to speed up learning

of lower-order components. In the third, it changes with t, eventually converging to

1/r where r is an amnesic average constant.

This amnesic average remains an unbiased estimator of the true PCs, and it al-

lows components to adapt to changing input statistics. But this plasticity introduces

an expected error into the IncSFA whitening process that will not vanish with more

samples [Weng and Zhang, 2006]. Results show that this is not problematic for

many applications, but it can lead to a slight oscillatory behavior around the true

features.

3.5.5 Other Methods of Neural Updating in PC and MC Extraction

Neural layers that compute incremental PCA (IPCA) and MCA build on the work

of Amari (1977) and Oja (1982). They showed that a linear neural unit using Heb-

bian updating could incrementally compute the first principal component of a data

set [Amari, 1977; Oja, 1982]6. Many IPCA algorithms emerged after that. Some

well-known ones are Oja and Karhunen’s Stochastic Gradient Ascent [SGA; Oja,

1985], Oja’s Subspace algorithm [Oja, 1989], Sanger’s Generalized Hebbian Al-

gorithm [GHA; Sanger, 1989], the Weighted Subspace algorithm [Oja, 1992], and

CCIPCA. For more information on comparisons, see [Oja, 1992; Hyvärinen et al.,

2001; Weng et al., 2003]. CCIPCA [Weng et al., 2003] modified GHA to be “can-

did” — meaning it is invariant to input vector magnitude, thus learning rate tuning

became more intuitive, which increased the practicality of the algorithm for high-

dimensional inputs such as in appearance-based computer vision. There is another

recent IPCA algorithm that adds GSO to CCIPCA [Park and Choi, 2008], so that

6Earlier work of a non-neural network flavor had shown how the first PC, includ-

ing the eigenvalue could be learned incrementally [Krasulina, 1970].
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the lower-order components should converge quicker, but with higher complexity.

With handling high-dimensional data in mind, CCIPCA is a chosen for IncSFA

for the following reasons:

1. Covariance-Free. Mentioned earlier. Due to high-dimensionality, it is im-

portant to keep space complexity down.

2. Avoid Gram-Schmidt orthonormalization (GSO) for enforcing orthogonal-

ity. CCIPCA uses the residual [Kreyszig, 1988] method. GSO will give a

more accurate result for lower-order components, but at quadratic complexity

(in the number of components). The residual method is local (linear com-

plexity), but can be less accurate. Again, due to high-dimensionality, it is

important to avoid quadratic complexity. Further, the experimental results

presented earlier showed that effective slow features could emerge even when

the whitening matrix was not perfect.

3. Both Eigenvectors and Eigenvalues Needed. The method needs to converge

to both eigenvectors and eigenvalues, since whitening requires both.

4. Intuitive to Tune the Learning Rate. It is not practical to spend a lot of time

tuning learning rates for every different type or set of data.

As for MCA: Xu et al. [1992] were the first to show that a linear neural unit

equipped with anti-Hebbian learning could extract minor components. Oja mod-

ified SGA’s updating method to an anti-Hebbian variant [Oja, 1992], and showed

how it could converge to the MC subspace. Studying the nature of the duality be-

tween PC and MC subspaces [Wang and Karhunen, 1996; Chen et al., 1998], Chen

et al. [2001] introduced the sequential addition technique. This enabled linear net-

works to efficiently extract multiple MCs simultaneously. Building upon previous

MCA algorithms, Peng et al. [2007] derived the conditions and a learning rule for

extracting MCs for a constant learning rate. Sequential addition was added to this

rule so that multiple MCs could be extracted [Peng and Yi, 2006].

I use a modified version of Peng’s MCA updating method, slightly altered to be

covariance-free and using GSO (CIMCA). Unlike simple MCA algorithms, Peng’s

MCA is a deterministic discrete time (DDT) method, which requires setting a con-

stant learning rate to achieve convergence. The method has low computational com-

plexity and is shown to work even for singular or near-singular correlation matrix

of the input. This makes it practical and especially feasible for non-stationary data

where the correlation coefficient behaves like a random variable [Kompella et al.,

2014a].
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CIMCA extracts the actual minor components (slow features), not just the sub-

space they span. It allows for a constant learning rate, which can be quite high,

leading to a quick reasonable estimate of the true components, and making learning

rate tuning more intuitive. Unlike at the IPCA stage, here GSO is useful and plausi-

ble since IncSFA does not use many features (minimizing the effect of the quadratic

complexity) and their magnitude is not important.

It should be noted that there may be many different ways of combining an in-

cremental PCA and an incremental MCA. My reasons for selecting the methods in

IncSFA were presented above, with a motivation to apply IncSFA on real-world im-

age sequences and on vision-based robotic platforms, aiming towards autonomous

learning, which is open-ended and continuous.

3.5.6 Links to Biological Systems

BSFA has been shown to derive slow features that operate like biological grid cells

from quasi-natural image streams, which are recorded from the camera of a moving

agent exploring an enclosure [Franzius et al., 2007]. In rats, grid cells are found

in entorhinal cortex [EC; Hafting et al., 2005], which feeds into the hippocampus.

Place cells and head-direction cells are found in rat hippocampus [O’Keefe and

Dostrovsky, 1971; Taube et al., 1990], while spatial view cells are found in primate

hippocampus [Rolls, 1999]. Augmenting the BSFA network with an additional com-

petitive learning (CL) layer derives units similar to place, head-direction, and spatial

view cells.

Although BSFA results exhibit the above biological link, it is not clear how the

full SFA technique might be realized in the brain. IncSFA with its Hebbian and

anti-Hebbian updating provides a more biologically plausible implementation of the

full SFA algorithm.

Hebbian Updating in CCIPCA

Hebbian updates of synaptic strengths of some neuron make it more sensitive to

expected input activations [Dayan and Abbott, 2001]:

v← v+η g(v,u) u, (3.17)

where u represents pre-synaptic (input) activity and g post-synaptic activity (a func-

tion of similarity between synaptic weights v and input potentials u). Eq. 3.17 re-

quires additional care (e.g., normalization of v) to ensure stability during updating.

To handle this in one step, learning rate η and retention rate 1−η can be used,
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v← (1−η)v+η g(v,u) u. (3.18)

where 0≤ η ≤ 1. With this formulation, Eq. 3.4 is Hebbian, where the post-synaptic

activity is the normalized response g(v,u) =
u(t) · v(t − 1)

‖v(t − 1)‖ and the presynaptic

activity is the input ui.

Anti-Hebbian Updating in CIMCA

The general form of anti-Hebbian updating simply results from flipping the sign in

Eq. 3.17. In IncSFA notation:

w←w−η g(w, ż) ż. (3.19)

To see the link between Peng’s MCA updating and the anti-Hebbian form, in the

case of the first MC, note that Eq. 3.6 can be rewritten as

w1 ← 1.5w1−η
�

C1 w1+ [w
T
1
w1] w1

�
, (3.20)

= 1.5w1−η
�
(ż ·w1) ż+ (w1 ·w1) w1

�
, (3.21)

= 1.5w1−η ‖w1‖2 w1−η
�
(ż ·w1) ż

�
, (3.22)

=
�

1.5−η ‖w1‖2
�

w1−η (ż ·w1) ż, (3.23)

where (ż ·w1) indicates post-synaptic strength, and ż pre-synaptic strength.

Hebbian Learning on Filtered Output

There is an alternative to using anti-Hebbian learning. Sprekeler et al. [2007] re-

formulated the slowness objective: instead of minimizing the variance of the time

derivative of the output signal, they try to maximize the variance of the low-pass

filtered output signal. They show analytically that the extraction of the single most

slowly varying direction from pre-whitened input can be implemented in a linear

continuous model with spiking model neurons by means of a modified hebbian

learning rule with a specific learning window.

Hebbian learning between a temporally filtered output and input is the basis of

several other temporal-stability based learning rules [Földiák, 1991; O’Reilly and

Johnson, 1994; Wallis and Rolls, 1997]. Links between these and slowness learning

are provided by Sprekeler et al. [2007]. However, even though Sprekeler’s method

is only for the first feature, it might lead to alternate approach to reach a fully incre-

mental SFA.
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3.5.7 Velocity Estimates of the Input Signal

The velocity estimates (the derivative signal) in the original SFA technique are

approximated via a backward difference method ż(t) = z(t) − z(t − 1). This

method behaves badly in the presence of input noise compared to other methods

(that are more computationally expensive) such as higher order difference estima-

tion, Cauchy’s differentiation formula, or Lanczos derivative computation [Groetsch,

1998]. However, noise is usually not a severe problem, since it changes at a faster

time-scale compared to the slowest components and therefore does not show up in

the higher-order slow features. Therefore, I opted to use the same backward differ-

ence method for the IncSFA to keep it computationally simple.

3.6 Conclusion

Incremental Slow Feature Analysis is an unsupervised learning technique that up-

dates slow features incrementally without computing covariance matrices. For many

instances, there is no need to use IncSFA instead of BSFA. But at higher dimension-

ality, IncSFA becomes more and more appealing. For some problems with very

high dimensionality and limited memory, IncSFA could be the only option, e.g., an

autonomous robot with limited onboard hardware, which could still learn slow fea-

tures from its visual stream via IncSFA. Experiments showed how IncSFA enables

an adaptive SFA, and how it enables SFA to be applied to high-dimensional im-

age streams without using multilayer receptive-field based BSFA architectures. The

following summarizes the advantages IncSFA has over BSFA:

• Adaptation to Changing Input Statistics. In the BSFA paradigm, new data

cannot be used to modify already learned slow features. If input statistics

change, IncSFA can adapt existing features without outside intervention, while

BSFA has to discard previous features to process the new data.

• Computational Efficiency. BSFA techniques rely upon batch Principal Com-

ponent Analysis (PCA). For input observations in an I-dimensional space,

the computational complexity of PCA using the Jacobi method [Forsythe and

Henrici, 1958] is of the order O(I3). IncSFA’s updating complexity scales

linearly with dimensionality (O(I)). Thus it has an advantage when the input

dimension is large.

• Space Complexity. First, IncSFA can discard each observation immediately

after an update. Second, note that IncSFA uses covariance-free techniques,
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where the data covariance matrices never need to be computed, even in pass-

ing. In a covariance-free technique, the features are updated directly from the

new data. The I(I + 1)/2 parameters in the covariance matrix do not have to

be estimated.

• Simplicity. For extracting features from high-dimensional image sequences,

IncSFA presents a simpler solution method than the alternate technique of

deep receptive-field based BSFA networks. By simpler, I mean that IncSFA

has just a handful of parameters, instead of the multitude of parameters asso-

ciated with the deep nets.

• Reduced Sensitivity to Outliers. Outlier observations in a dataset can cause

problems for BSFA, as these outliers can corrupt the slow features. In some

cases, a feature may even become sensitive to an outlier. In a typical batch

implementation, each observation has the same amount of influence on the

features. In IncSFA, the influence of a single observation fades as newer

observations are experienced. The learning rate implicitly controls this for-

getting factor. Different learning rate settings can lead to different features

— features that emerge from a high learning rate setting are biased to detect

slowly-changing phenomena that occur with more regularity than if a lower

learning rate were to be used.

• Biological Plausibility. IncSFA adds further biological plausibility to SFA.

SFA itself has been linked to biological systems due to the results in deriving

place cell, grid cells, etc., but it is difficult to see how BSFA could be realized

in the brain. IncSFA’s updates can be described in incremental Hebbian and

anti-Hebbian forms.

These advantages make IncSFA suitable to use for several online learning ap-

plications. IncSFA does not store previously learned representations. This poses a

problem in the case of open-ended learning, where it becomes essential to not re-

learn previously encoded inputs. Therefore learning progress must be cached for

future use. The next chapter presents a modular slow feature learning algorithm that

addresses this issue.



Chapter 4

Curiosity-Driven Modular

Incremental Slow Feature Analysis

Topple the cup

Grasp the cup

Figure 4.1. How can a robot quickly acquire multiple abstractions from a large set of

unknown (including random) behaviors? Curiosity-Driven Modular Incremental Slow

Feature Analysis (Curious Dr. MISFA) addresses this by combining IncSFA with a

curiosity drive to autonomously learn multiple slow feature abstractions in the order

from least to most costly.

In Chapter 3, the Incremental SFA (IncSFA) algorithm was presented, which

extracts slow features without storing or estimating computationally expensive co-

variance matrices of the input data. This makes it suitable to use IncSFA for ap-

45
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plications with high-dimensional images as inputs. However, if the statistics of the

inputs change over time, like most online-learning approaches, IncSFA gradually

forgets previously learned representations, for instance, if the robot (see Figure 4.1)

changes executing actions from toppling the cup to grasping the cup. How can

the robot quickly acquire multiple abstractions from a large set of such unknown

(including random) action-sequences? I present here an online-learning algorithm

called Curiosity-Driven Modular Incremental Slow Feature Analysis [Curious Dr.

MISFA; Kompella* et al., 2013; Kompella et al., 2012b]. Curious Dr. MISFA com-

bines IncSFA with a curiosity drive to autonomously learn multiple slow feature

abstractions in order from least to most costly, with theoretical guarantees. A gat-

ing feature is used to store good abstractions and preserve them for later use with

learned tasks. The overall system is shown to have interesting and useful properties

through experiments.

4.1 Overview

In this section, I will present an overview of the Curious Dr. MISFA algorithm. Fig-

ure 4.2 shows the architecture of Curious Dr. MISFA. The input to the algorithm is

a set of pre-defined high-dimensional observation streams X = {x1, ...,xn : xi(t) ∈
RI , I ∈ N}, which may or may not be unique. At any time t, the agent observes

an input sample from only one of the observations streams. This is analogous to

watching different channels on a television or making observations while executing

different tasks1. The desired outcome of the learning process is a sequence of ab-

stractions Φt = {φ1, ...,φm; m ≤ n} that are learned in order of increasing learning

difficulty. Each abstraction φi : x→ y is unique and maps one or more observation

streams x ∈ X to a low-dimensional output y(t) ∈ RJ , J ∈ N. Since the learn-

ing difficulty of the observation streams is not known a priori, the learning process

involves estimating not just the abstractions, but also the order in which the observa-

tion streams need to be encoded. To this end, Curious Dr. MISFA uses reinforcement

learning to learn an optimal observation stream selection policy, based on the intrin-

sic rewards proportional to the progress made while learning the abstractions. The

architecture of Curious Dr. MISFA includes (a) a reinforcement learning (RL) agent

that generates an observation stream selection policy, (b) an adaptive Incremental

Slow Feature Analysis coupled with a Robust Online Clustering (IncSFA-ROC; see

Section 4.3.2 for details) module that updates an abstraction based on the incoming

1It is straightforward to solve the problem of learning multiple abstractions if the agent can ob-

serve samples from all the streams at time t. Abstractions corresponding to each stream can simply

be learned in parallel.
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Figure 4.2. Architecture of Curious Dr. MISFA includes (a) a reinforcement learning

agent that generates an observation stream selection policy based on the intrinsic re-

wards, (b) an adaptive Incremental SFA coupled with a Robust Online Clustering mod-

ule that updates an abstraction based on the incoming observations, and (c) a gating

system that prevents encoding observations that have been previously encoded.

observations, and (c) a gating system that prevents encoding observations that have

been previously encoded.

The design of the RL agent and the intrinsic rewards are crucial to ensure sta-

bility of the method (see Section 4.3.7 for details). An overview of these and the

control flow of the algorithm are discussed next.

Design of the RL agent. The RL agent is within an internal environment that

has a set of discrete internal states S int = {sint
1

, ..., sint
n
}, equal to the number of ob-

servation streams. In each state sint
i

, the agent is allowed to take only one of the two

actions (A int): stay or switch. The action stay makes the agent’s internal state to be

the same as the previous state, while switch randomly shifts the agent’s state to one

of the other internal states (see Section 4.3.1 for details on why this is crucial). The

agent at each state sint
i

, receives a fixed τ time step sequence of observations (x) of

the corresponding stream xi.

The agent maintains a single adaptive abstraction bφ ∈ RI×J , bφ 6∈ Φt that updates
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via an IncSFA-ROC abstraction-estimator (denoted by Θ) based on the observations

x. To prevent it from encoding inputs that have been previously encoded, a gating

function G : X → Φt ∪ bφ assigns the appropriate abstraction φi ∈ Φt to the obser-

vation stream if the observed estimation error is low, otherwise bφ is assigned. Let

ξ= ‖Θ(x,G (x))−G (x)‖ denote the error made by the abstraction-estimator for the

input-samples x.

Design of the intrinsic reward. The goal of the RL agent is to learn an ob-

servation stream selection policy πint : S int → A int that optimizes the following

cost-function:

J =min
πint
(〈ξ̇〉τ

t
, 〈ξ〉τ

t
). (4.1)

Eq. (4.1) is a multi-objective reinforcement learning problem [MORL; Gábor et al.,

1998; Vamplew et al., 2011], where 〈ξ̇〉τ
t

is time-derivative of the τ-window aver-

aged error 〈ξ〉τ
t
. Minimization of the first objective would result in a policy that

will shift the agent to states where the error decreases sharply (〈ξ̇〉τ
t
< 0), indicating

faster learning progress of the abstraction-estimator. Minimization of the second ob-

jective results in a policy that improves the developing abstraction to better encode

the observations.

The two objectives are correlated but partially conflicting: optimizing the first

objective aids in optimizing the second, however, optimizing the second objective

would result in an increasing error-gradient ξ̇ (from a negative value to 0), which

conflicts with the first. Therefore, there does not exist a single solution that simul-

taneously optimizes each objective. I instead use an approach to find a dynamically

changing pareto-optimal policy [Vamplew et al., 2011], by prioritizing each objec-

tive based on the error ξ. To this end, the cost is scalarized in terms of a scalar

reward r int that evaluates the input x received for the tuple (sint, aint, sint
− ) as follows:

r int =
�
α〈ξ̇〉τ

t
+ βZ(|δ− 〈ξ〉τ

t
|)
�

, (4.2)

where Z is a normally distributed random variable with mean δ and standard devi-

ation σ. Here, α, β , δ and σ are constant scalars (see Sections 4.3.3 and 4.3.4 for

details on how this reward is realized for the IncSFA-ROC abstraction-estimator).

Control flow of the algorithm. Figure 4.3 shows the control flow diagram of

Curious Dr. MISFA. A reward function Rint
t

: S int×A int→ R is estimated based on

the scalar-rewards r int received for (sint, aint, sint
− ) tuples (see Section 4.3.4 for details).

The observation stream selection policy πint at time t, is learned using Model-based

Least-Squares Policy Iteration Technique [LSPI; Lagoudakis and Parr, 2003] based

on the current estimated reward function Rint
t

and the known transition-model. I use
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Figure 4.3. The control flow of Curious Dr. MISFA involves a simultaneous estimation

of (a) reward function (Rint

t
) using the principle of artificial curiosity, (b) an abstraction

( bφ) using IncSFA-ROC algorithm and (c) an observation stream selection policy (πint)

using model Least Squares Policy Iteration (LSPI) algorithm. The gating-function pre-

vents encoding previously encoded observation streams. bφ is added to the learned

abstraction set (Φt ) if the estimation-error is below a low threshold (δ).

epsilon-greedy [Sutton and Barto, 1998] strategy over πint to balance between ex-

ploration and exploitation (see Section 4.3.4 for details). The observation stream

selection policy is then used to generate (sint, aint, sint
− ) samples and the correspond-

ing new observations x via the sensor-function U . These new observations, if not

encodable by previously learned abstractions, are used to update the adaptive ab-

straction bφ and re-estimate the reward function Rint
t

. The updated abstraction bφ is

added to Φt , (i.e., Φt ← Φt ∪ bφ) if the error ξ falls below a low threshold δ. If and

when added, a new adaptive abstraction bφ is instantiated and the process continues.

The rest of the chapter is organized as follows. Section 4.2 presents a theoretical

formulation of the learning problem associated with Curious Dr. MISFA. Section 4.3

discusses different parts of the Curious Dr. MISFA algorithm in detail. Section 4.4

presents a pseudocode of the algorithm along with other implementation details.

Section 4.5 explores the application of Curious Dr. MISFA to environments such as a

room-maze where each room has a time-varying audio or a video source. Section 4.6

presents experimental results. Section 4.7 discusses neurophysiological correlates of

the algorithm and Section 4.8 concludes.
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Figure 4.4. Given a set of time-varying observation streams, an abstraction corre-

sponding to the easiest-encodable yet unknown observation stream is learned first.

(Left-Figure) An example result after the first abstraction was learned. (Right-Figure)

Ω(x) denotes the curiosity-function that maps an observation stream x to a scalar

value in [0, 1]. Difficult-to-encode observation streams have higher Ω values. Figure

shows the desired result, which is a sequence of abstractions {φi}i∈N learned in the

order of increasing Ω-values of the observation streams that they encode. However,

Ω is not known a priori, therefore, the learning process involves estimating both the

abstractions and the Ω-values. The curved arrow indicates the temporal evolution of

the learning process.

4.2 Learning Problem Formalized

The underlying learning problem associated with Curious Dr. MISFA can be formu-

lated as an optimization problem. Simply put, the problem states that for a given

set of time-varying observation streams, an abstraction corresponding to the most

easily encodable yet unknown observation stream is learned first. The result is an

ordered sequence of learned abstractions {φ1, ...,φm}, where each abstraction maps

one or more inputs to a lower-dimensional output. The optimization problem is not

specific to a particular type of abstraction-estimator and therefore addresses a class

of related problems. Later in the chapter, I will show that the Curious Dr. MISFA

algorithm converges to the optimal solution of the proposed optimization problem.

Figure 5.2 illustrates the learning process. The formalized problem is as follows:

Notation:

Input: LetX = {x : x(t) ∈ RI , I ∈ N} denote a set of of I-dimensional observa-

tion streams. Let X ⊂X be a finite subset with n ∈ N elements that may or may not

be unique. Each xi ∈ X is a stream generated by a sensor-function2U of an arbitrary

2A sensor-function could represent a single or a collection of different sensor modalities.
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discrete-time process3 F i indexed by t ∈ N, i.e. xi(t) =U (F i(t)),∀i ∈ {1, ..., n}.
At each time t however, an input sample is available from only one of the n obser-

vation streams.

Abstraction: Let Θ denote some online abstraction-estimator that updates a

feature-abstraction φ, where Θ(x,φ) returns an updated abstraction for an input x.

The abstraction φ : x 7→ y maps a high-dimensional observation stream x ∈ X to

a lower-dimensional output y(t) ∈ RJ , J ≪ I , J ∈ N, such that y(t) = φ (x(t)).

Let Φt denote the set of learned-abstractions at time t, such that, Φt1
⊆ Φt2

,∀t1 <

t2. Let XΦt denote the set of pre-images of the corresponding feature outputs yi,

XΦt = {φ←
i

yi, ∀φi ∈ Φt}. XΦt represents the encoded observation streams at time

t.

Curiosity Function: Let Ω :X → [0, 1) denote a function indicating the speed

of learning an abstraction by the abstraction-estimator Θ. Easily encodable in-

puts have lower values of Ω. Ω induces a total ordering among the input streams

making them comparable in terms of the learning difficulty (see Section 4.3.7 for

a proof on the existence of such a function). Let bX and bXΦt denote the ordered-

sets (induced by Ω) of X (excluding constant streams) and XΦt respectively. Let

Ω[X ] = [Ω(x1), ...,Ω(xn)]
T denote a column-vector of the Ω-values corresponding

to the components of the set X .

Other Notation: Let Λt denote a |bXΦt |× |bX | diagonal-matrix at time t, with the

main-diagonal entries equal to 1 and rest 0. |.| indicates cardinality of a set, ‖.‖ indi-

cates Euclidean norm, 〈.〉t indicates averaging over time, 〈.〉τ
t

indicates windowed-

average with a fixed window size τ over time, δ is a small scalar constant (≈ 0) and

∀ indicates forall.

With the above notation, the optimization problem is formulated as follows:

Given the input X , find a finite sequence of m abstractions {φi}mi=0
, m ≤ n, such

that at any time t, the following objective is minimized:

min
Φt



Ω[bXΦt]−ΛtΩ[bX ]


 , ∀t = 1, 2, ...

under the constraints,

〈y i
j
〉t = 0, 〈

�
y i

j

�2

〉t = 1, ∀i ∈ {1, ..., J},∀ j ∈ {1, ...,
��Φt

��} (std. normal stats) (4.3)

�
∀φi ∈ Φt ,∃ j ∈ {1, ..., n},

and ∀φk 6=i ∈ Φt

�
:
〈‖Θ(xj,φi)−φi‖〉τt ≤ δ (at least one stream)

〈‖Θ(xj,φk)−φk‖〉τt > δ (unique abstraction)
(4.4)

3F i represents driving-forces [Wiskott, 2003] generating the observation stream.
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The first term Ω[bXΦt] in the objective denotes an ordered array of Ω values of

the observation streams that have been encoded until time t, while the second term

ΛtΩ[bX ] indicates an ordered array of Ω values of the top |bXΦt | easily-encodable

observation streams. The objective is to minimize the difference between the two

terms while satisfying two constraints: Constraint (4.3) requires that the abstraction-

output components have zero mean and unit variance. This constraint enables the

abstractions to be non-zero and avoids learning features for constant observation

streams. Constraint (4.4) requires that a unique abstraction be learned that encodes

at least one of the observation streams, avoiding redundancy. Each learned abstrac-

tion is therefore a lower-dimensional invariant representation of some underlying

regularity among the discrete-time processes {F i}i∈{1,...,n}.

Optimal Solution: For the objective to be minimized under the Constraints

(4.3)-(4.4), at any time t, the optimal solution is to learn an abstraction corre-

sponding to the current easiest but not-yet-learned regularity among the observa-

tion streams as measured by the curiosity-function Ω. The result is a set of learned

abstractions {φ1, ...,φm}, ordered according to the increasing Ω-value of the corre-

sponding observation streams that they encode.

However, since Ω is not known a priori, it needs to be estimated online by ac-

tively exploring the observation streams. One possible approach is to find (a) an

analytical expression of Ω for the particular abstraction-estimator Θ and (b) an in-

put sampling technique that can estimate the Ω values for each observation stream.

This approach is dependent on Θ and may not be applicable to other abstraction-

estimators. A more general approach is to use the learning progress of Θ, while

exploring using reinforcement learning (RL) to estimate the Ω values in the form

of curiosity rewards for each observation stream. This approach is independent of

the abstraction-estimator used. However, it requires learning an observation stream

selection policy πint, and at the same time the abstraction from the incoming input-

samples based on the (imperfect) policy πint. Curious Dr. MISFA is an iterative

algorithm that solves the optimization problem (see Section 4.3.7). A detailed de-

scription of the method is discussed next.

4.3 Method Description

Curious Dr. MISFA is a curiosity-based abstraction learning algorithm that uses

incremental slow feature analysis to learn abstractions by exploring among a set

of input observation streams using a stay-switch action selection mechanism. The

following sections discuss the components of Curious Dr. MISFA in detail.
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4.3.1 RL Agent’s Internal Environment

p    =  1
ii, stay

S1

S2

Si

Sn

Si+1 Si-1

p     =  1/(n-1)
ij, switch

Stay

Stay

Stay

Stay

Stay

Stay

Switch

int

int

int

int

int

int

int

int

Figure 4.5. The state-action transition model of the agent’s internal environment re-

sembles that of a complete-graph markov chain.

Section 4.1 presented an overview on the design of the RL agent. Here, I will

discuss more details. For the sake of completeness, some of the notation used in

Section 4.1 is re-defined here. The RL agent learns to select the current easiest but

not yet encoded stream among the observation streams. The environment comprises

a set of discrete internal states S int = {sint
1

, ..., sint
n
} each corresponding to an input

stream xi,∀i ∈ {1, ..., n}. The agent at any state sint ∈ S int can take only one of

the two actions: stay or switch. The action stay makes the agent’s internal state

to be the same as the previous state, while switch randomly (uniformly) shifts the

agent’s internal state to one of the other neighboring states. The random nature

of the switching forces the IncSFA-ROC abstraction-estimator not to encode any

regularity while switching between the states. This is crucial to avoid combinatorial

possibilities of generating a coherent stream of data (both in space and time) by

deterministically switching between a few states at different times.

The transition model P int : S int × A int × S int → [0, 1] of the environment
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dynamics resembles that of a Complete-Graph, where each state sint
i
∈ S int is repre-

sented by a node in a fully-connected undirected-graph.

P int
i j,stay

=

(
1, if i = j

0, if i 6= j
, P int

i j,switch
=

(
0, if i = j

1

n−1
, if i 6= j

, ∀i, j ∈ [1, ..., n]. (4.5)

The agent has the capability to shift between any of observation streams, similar

to switching between channels of a television or switching between several tasks

resulting in different observation streams of data. Figure 4.5 illustrates the model.

Abstracted State Space: Let the discrete-time processes (driving forces) F i

be defined over a finite state space S . The agent perceives these states partially

through previously learned abstractions φi ∈ Φt . The agent’s abstracted state space

S Φ = {sΦ
1
, ..., sΦ

p
} is defined such that it contains the space spanned by the outputs

y of all the abstractions that were previously acquired using Θ. The agent learns

a new abstraction for an observation stream xi if the encoded abstraction outputs

are predictable with respect to S Φ. In the experiments, I assume that the agent has

a default abstracted state space. For example, in the robot experiment, the agent’s

default abstracted state space contains low-level kinematic body joint poses of the

robot learned offline using Task Relevant Roadmaps [Stollenga et al., 2013]. The

next section presents an intuitive example of the abstracted state space.

4.3.2 Abstraction-Estimator (Θ): IncSFA-ROC

Curious Dr. MISFA’s abstraction-estimator method is the Incremental Slow Feature

Analysis (IncSFA) coupled with a Robust Online Clustering [ROC; Guedalia et al.,

1999; Zhang et al., 2005] algorithm. IncSFA is used to learn a real-valued slow

feature abstraction (φ) of the input whereas ROC is used to learn a discrete model

mapping the slow feature outputs with respect to the abstracted state space S Φ.

As an example, consider a robot viewing its moving arm that topples an object

in the scene (Figures 4.6(a)-(c)). The state space S Φ here consists of discretized

joint angles of the shoulder into p=20 bins (S Φ = {sΦ
1
, ..., sΦ

p
}). For each sΦ

i
, there

is an associated instance of the clustering algorithm, leading to p=20 instances of

the clustering algorithm. A developing slow feature output here is a step function

(Figure 4.6(d)), e.g., when the object is not toppled the feature output equals≈ −1.5,

and when the object is toppled the feature output equals ≈ 0.5. Upon convergence

of IncSFA first and the clustering algorithm second, each joint angle will be mapped

to two cluster centres (Figure 4.6(e)), (except for the joint angles 15-20, where the

iCub’s hand is to the left of the object’s position and the object cannot be in not-

toppled position) providing information about invariants captured with IncSFA.
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Figure 4.6. IncSFA-ROC example. (a) The iCub is placed next to a table with a plastic

cup in its reach. It can interact with the cup by moving its right hand along its shoulder

joint. (b) A sample input image when the cup is not toppled. (c) A sample input image

when the cup is toppled. (d) IncSFA output plotted against time after a few time steps

of exploration. The output is a step function indicating whether the cup is toppled or

not, invariant to the position of its hand visible in the image. (e) Learned ROC cluster

centers map the feature output with respect to the angle of the shoulder joint.

The slow feature outputs can change rapidly during the training phase. There-

fore, learning these clusters is not as straightforward as the above example makes

it seem. The estimator has to be able to change its estimates to this non-stationary

input, while converging to a good estimate when the input becomes stable. ROC al-

gorithm is especially suitable for handling non-stationary data. It is similar to an in-

cremental K-means algorithm [Forgy, 1965] — a set of cluster centers is maintained,

and with each new input, the most similar cluster center (the winner) is adapted to

become more like the input. Unlike K-means, with each input, the adaptation step is

followed by merging the two most similar cluster centers and creating a new cluster

center at the latest input. In this way, ROC can quickly adjust to non-stationary in-

put distributions by directly adding a new cluster for the newest input sample, which

may mark the beginning of a new input process.

But is this plasticity at the cost of stability? No. In order to enforce stability,

clusters maintain a weight, which increases faster for inputs more similar to the
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Algorithm 6: ROC-Amnesic(y, sΦ, Nmax,ν amn)

//Cluster SFA-encoded samples y ∈ R J

//y : IncSFA feature output

//sΦ : Current abstracted state

//Nmax > 1 : Maximum number of clusters

//0≤ νamn ≤ 1 : Amnesic parameter

//Determine which set of clusters to use

//C : Set of cluster centers

//a : Set of cluster weights

1 {C,a} ← GetClusteringInstance (sΦ)

2 if |C|< Nmax then

//Cluster center is y, weight is 0

3 {C,a} ← AddNewCluster (y,C,a)

4 else

5 winner ← arg max
i

Response(y,ci)

6 cwinner ← cwinner +
y− cwinner

awinner + 1

7 awinner ← awinner +Response(y,cwinner)

8 {γ,ρ} ← argmax
γ,δ,γ 6=δ

Response(cγ,cδ) //Merge the two closest

9 cγ ←
cγaγ+ cδaδ

aγ+ aρ
10 aγ ← aγ+ aρ
11 cρ ← y //Latest input becomes new cluster

12 aρ ← 0

13 for i← 1 to Nmax do

14 ai ← ai(1− ν amn) //Forgetting (leak)

15 end

16 end

cluster center. A large weight prevents a cluster center from changing that much.

When two clusters are merged, their weights are combined.

A sketch of the ROC per-sample update is in Alg. 6. The ROC algorithm repeat-

edly iterates through the following steps. For every input sample the algorithm finds

the closest cluster winner and updates the center cwinner towards it, also increasing

the weighting parameter awinner . Next, the closest two clusters are merged into one

cluster. Then, a new cluster is created around sample y. Finally, all clusters weights
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decrease slightly. Parameters required are Nmax, the maximum number of clusters,

an amnesic parameter ν amn to prevent convergence, and the response function for

similarity measurement. The next section discusses how the error while learning the

abstractions is computed.

4.3.3 Estimation error (ξ)
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Figure 4.7. An example estimation error over time of the ROC-algorithm. (a) The

estimation error of 20 instances of ROC nodes to estimate the IncSFA output to 20

values. (b) The total estimation-error ξroc is the sum of stored errors of all the nodes.

The estimation error of the IncSFA algorithm (ξsfa) at any time t is computed as:

ξsfa(t) = ‖ bφt − bφt−1‖, (4.6)

where ‖.‖ indicates the Euclidean norm and bφt denotes the current adaptive IncSFA

abstraction.

The estimation error of the ROC algorithm is computed differently than for

IncSFA. There are a total of variable p ∈ N instantiations of the ROC algorithm,

estimating the IncSFA feature output y(t) to p values. Each ROC algorithm node j

has an associated error ξroc
j

(Figure 4.7(a)). These errors are initialized to 0 and then

updated whenever the node is activated by

ξroc
j
(t) =min

w
‖y(t)− vw‖, (4.7)

where y(t) is the slow feature output vector and vw is the estimate of the wth cluster

of the activated node. The total ROC estimation error (Figure 4.7(b)) is the sum of
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stored errors of the nodes:

ξroc(t) =

p∑

j=1

ξroc
j
(t). (4.8)

The estimation-error of the IncSFA-ROC abstraction-estimator is the tuple ξ =�
ξsfa,ξroc

�
. How this estimation-error tuple is translated to intrinsic rewards is dis-

cussed next.

4.3.4 Intrinsic Reward Function Estimate (Rint)

Section 4.1 presented an overview on the design of intrinsic rewards to learn an

observation stream selection policy that minimizes a multi-objective cost function.

Here, details on how the reward function is estimated for the IncSFA-ROC algorithm

is discussed. The reward function Rint : S int×A int×S int→ R is updated as:

eRt(s
int, aint, sint

− ) = α

�
Clip

�∑

τ

−ξ̇sfa,−L ,L
�
+ β

∑

τ

(Z(|δ− ξroc|)
�

+ (1−α)eRt−1(s
int, aint, sint

− )

Rint
t
← eRt/‖eRt‖, (4.9)

where Clip(x , a, b) =min(max(x , a), b),L is a clipping constant, ξ̇s f a is the time-

derivative of the estimation-error of IncSFA for the τ input samples x, ξroc is the

estimation-error of ROC estimator based on the IncSFA feature output, Z is a nor-

mally distributed random variable with mean equal to the threshold δ and a constant

standard-deviation σ, β is a positive constant, α is a constant smoothing coefficient

and ‖.‖ represents the Euclidean norm. eRt represents a reinforcement function that

updates at every time t. The derivative of the IncSFA progress is computed via

backward-difference approximation and is clipped to make it bounded. It represents

the curiosity reward term, while the estimation-error term of the ROC-clustering al-

gorithm contributes to the reward based on how well the agent is able to estimate the

IncSFA outputs. The intrinsic reward function Rint
t

is the normalized reinforcement-

function. In the next section, I will show how the intrinsic rewards are used in

shaping the observation stream selection policy.

4.3.5 Observation Stream Selection Policy (πint)

Least squares temporal difference Q-learning (LSTDq) is used to efficiently evalu-

ate the current observation stream selection policy πint
t

: S int → A int for the next
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iteration based on simulated (sint, aint, r int) tuples sampled from the current environ-

ment model (P int, Rint
t
). The Least-Squares fixed-point approximation of the value

function for a transition model P int and reward function Rint is given by:

bQπint
t = Ψ

�
ΨT (Ψ− γP intΠint

t
Ψ)
�−1
ΨT Rint

t
, (4.10)

where Ψ denotes the basis functions used to represent the (sint, aint, r int) tuple, P int

is a matrix of size |S int||A int| × |S int| that contains the transition model of the

process
�

P int((sint, aint), sint
− ) =P (sint, aint, sint

− )
�

and Πint
t

is a matrix of size |S int|
×|S int||A int| that describes the current policy πint

t
:

Πint
t
(s′, (s′, a′)) = πint

t
(a′; s′).

The policy πint
t+1

for the next iteration is computed via policy-improvment from the

value function as:

πint
t+1
(s) = arg max

a∈{stay,switch}
bQπint

t (s, a), ∀s ∈ S int. (4.11)

To balance between exploration and exploitation, a decaying ε-greedy strategy [Sut-

ton and Barto, 1998] over the observation stream selection policy is used to carry out

an action (stay or switch) for the next iteration. When the ε value decays to zero, the

agent exploits the policy and an abstraction is learned. The next section discusses

the gating system that prevents the agent from learning the same abstraction.

4.3.6 Gating Function (G )

The gating function G : X → Φt ∪ bφ assigns the appropriate abstraction φi ∈ Φt to

the incoming observation stream if Constraint (4.4) is satisfied with respect to the

ROC clustering algorithm, and the adaptive abstraction module bφ will be prevented

from learning via a “gating signal” (see Figure 4.8). Inputs badly encoded by all

φ ∈ Φt serve to train the adaptive module bφ. Hence the adaptive module will

encode only data from observation streams that were not encoded earlier. The gating

function of Curious Dr. MISFA is:

G (x) =




φl , if min

i
{|ξroc

i
|}< δ, l = argmin

i

{|ξroc
i
|},∀i ∈ {1, ..., #Φt}

bφ, otherwise
(4.12)

where # denotes the cardinality of a set, |.| represents the absolute value and ξroc
i

is

the ROC estimation error for the input x, corresponding to the i th abstraction-module

φi ∈ Φt , ∀i ∈ {1, ..., #Φt}.
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Figure 4.8. Block diagram of the Gating System. See text for details.

4.3.7 Dynamical Analysis

In this section, I will present a formal analysis of the dynamical behavior of Curi-

ous Dr. MISFA algorithm. Proofs of all theorems introduced here are included in

Appendix A.

Outline: The existence of a curiosity-function Ω that indicates the speed-of-

learning of an abstraction-estimator is first shown in Theorem 1. The curiosity-

function of IncSFA is then defined (Definition 1). Based on Ω, optimal fixed-points

for the adaptive abstraction bφ and the observation stream selection policy πint are

shown in Theorems 2 & 3. Finally, for a set of mild conditions, the convergence of

the algorithm’s policy πint and the adaptive abstraction bφ to their respective optimal

fixed-points is shown in Theorems 4 & 5. The following analysis is for n > 2, i.e.,

there are more than two observation streams. The specific case of n≤ 2 is discussed

later in the section.

Convergence Conditions: I assume that the following conditions are satisfied

for the rest of the analysis: Let t0 ∈ N denote the time whenever a new adaptive
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abstraction bφ is instantiated,

ηmca max(λ1
1
, ...,λn

1
)< 0.5, 0< ηmca ≤ 0.5, (4.13)

‖ bφi(t0)‖2 = 1, bφi(t0)
Tφ i 6= 0, ∀i ∈ {1, ..., J}, (4.14)

〈‖Θ(xi,
bφ)− bφ‖〉τ

t
> δ, ∀i ∈ {1, ...,n}, τ <min(τ

1/2

1
, ...,τ

1/2

n
), (4.15)

ln(Ω(xi))

ln(Ω(x j))
<

γ

(n− 1− γ(n− 2))
, ∀xi,x j ∈ X s.t. Ω(xi)> Ω(x j), (4.16)

where λi
1

is the largest eigenvalue of expected correlation-matrix E[żi ż
T
i
], żi is the

derivative of the whitened output of xi.
bφi(t0) is the i th column of the abstraction

bφ(t0) at time t = t0, φ i is the i th minor-component of E[żżT], τ
1/2

i
=

ln(1/2)

ln(Ω(xi))
and

γ is a constant discount-factor (0< γ < 1) for RL.

Conditions (4.13) & (4.14) are required for the convergence of the IncSFA al-

gorithm for a stationary input-distribution. Condition (4.15) determines the range

of values for time-constant τ and δ. δ is usually selected to be close to 0. Finally,

Condition (4.16) is required for optimal ordering of the abstractions learned. If the

condition does not hold for a few observation streams, the result is a sub-optimal so-

lution (Theorem 6). There are a few other minor conditions, which will be covered

in the proofs for the theorems.

Let X = {x : x(t) ∈ RI , I ∈ N} denote a set of of I-dimensional observation

streams. Let X ⊂ X be a finite subset with n ∈ N elements that may or may not be

unique. Let Θ denote an abstraction-estimator that updates a real-valued abstraction

and ensures an almost sure convergence for an I-dimensional stationary input signal.

Let Φ∗ denote the space of all learnable abstractions by Θ for the input X satisfying

Constraints (4.3)-(4.4) (see Section 4.2). Let bφ ∈ RI×J , J ∈ N, bφ /∈ Φ∗ denote the

current adaptive abstraction.

Theorem 1. There exists a curiosity-function Ω : X → [0, 1) corresponding to Θ

that induces a total ordering on X .

Definition 1. The curiosity-function of the IncSFA algorithm for an observation

stream x is defined as

Ω(x) =

�
1−

ηmca(λK−1−λK)

1−ηmca −ηmcaλK

�
, (4.17)

where λK 6= λK−1 denote the smallest two eigenvalues of E[ż(t)ż(t)T], and z(t) ∈
RK is the whitened output of x(t).

Note that the curiosity function is used only to evaluate whether the abstractions

learned by the algorithm correspond to the observation streams with an increasing
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order of Ω value. The Curious Dr. MISFA algorithm however, does not use the

curiosity function for its computation.

Definition 2. At time t, let xl denote the current easiest but not yet learned obser-

vation stream and sl denote the corresponding internal state. Then, the index l is

given by

l = argmin
∀i: xi∈X ′

Ω(xi), X ′ = {xi : G (xi) =
bφ,xi ∈ X }. (4.18)

Theorem 2. At time t, the optimal fixed-point φ∗ ∈ Φ∗ of the adaptive abstraction
bφ is equal to the J slow features of the observation stream xl .

Theorem 3. The optimal observation stream selection policy (π∗ : Φ∗ × S int →
A int,A int = {0 (stay), 1 (switch)}) to learn an abstraction φi ∈ Φ∗ is given by:

π∗(φi, s) = 1− ✶{sl}(s), ∀s ∈ S int,

Theorem 4. Let {πint
t
}t∈N denote the sequence of observation stream selection poli-

cies generated by the algorithm for ε = 1. If Conditions (4.13),(4.14),(4.15) and

(4.16) hold, then for t > t0,

lim
t→∞

πint
t
(s) = π∗(φ∗, s), ∀s ∈ S int

Theorem 4 shows that during exploration (ε = 1), the πint
t

converges to a policy

with an action stay (= 0) for the state (sl) corresponding to the current easiest but

not yet encoded observation stream (xl), and the action switch (= 1) for rest of the

states. Also, since the policies πint
t

and π∗(φ∗) are binary-vectors, it follows that

∃tc ∈ N (t0 < tc <∞), s.t. for t = tc, π
int
t
= π∗(φ∗).

Theorem 5. Let { bφt}t∈N denote the sequence of adaptive abstractions generated by

the algorithm for ε = 0. If tc(> t0) ∈ N is the time when πint
t
= π∗(φ∗) and if

Conditions (4.13),(4.14),(4.15) and (4.16) hold, then for t > tc,

lim
t→∞

bφt = φ
∗

When the agent exploits the converged policy πint (Theorem 4), its internal state

shifts to sl where it continually receives input-observations xl(t). As a result, the

adaptive abstraction converges to the optimal abstraction φ∗ (Theorem 3).

When, the window-averaged ROC estimation error drops below the threshold

δ (〈‖Θ(xl,
bφ)− bφ‖〉τ

t
< δ), the adaptive abstraction bφ is frozen and saved to the

abstraction set Φt (Φt ← Φt ∪ bφ). Theorems 2-5 show that the saved abstraction
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satisfies Constraints (4.3)-(4.4) and the cardinality of the abstraction set increments

by a value 1. The process repeats until all the abstractions have been learned.

Theorem 5 requires tc, the time at which the policy πint has converged. However,

in practice tc is not known a priori and needs to be estimated online. In large state

spaces estimating tc can be difficult. As an alternative, I use a heuristic ε-greedy

strategy (see Section 4.3.5) in the algorithm. By selecting an appropriate decay

constant we can get the desired result.

Case n ≤ 2: For n = 2, i.e. two states S int = {sint
1

, sint
2
}, the stochastic switch

action is equivalent to a deterministic switch to the other state. Therefore, Curious

Dr. MISFA can learn an abstraction by switching between the states (i.e., only if both

the stimulus streams are individually encodable). If Ω(xmix) < min(Ω(x1),Ω(x2)),

where xmix denotes the mixture signal, then the algorithm will learn a policy that

switches the agent’s internal state to the other (πint = [1, 1]). This results in an

abstraction corresponding to the mixture signal. In this special case, the algorithm

will learn a total of 3 abstractions. For n = 1, the solution is trivial, the algorithm

learns an abstraction corresponding to the observation stream (if it is encodable),

irrespective of the observation stream selection policy.

Sub-Optimality: Convergence Conditions (4.13), (4.14) and (4.15) can eas-

ily be met by setting the algorithm-parameters appropriately. However, Condition

(4.16) does not involve setting any algorithm parameter and is a direct condition on

the observation stream complexity. I will discuss here a scenario when a few of the

observation streams violate the condition. Figure 4.9(a) shows a plot of the ratio
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(Ω(x)r - Ω(x)) r = 

Ω(xd)Ω(xc)Ω(xb)Ω(xa) Ω(xe)

Figure 4.9. (a) A plot of the ratio r =
γ

(n− 1− γ(n− 2))
over the number of observa-

tion streams n for two values of γ = 0.99 & 0.999. (b) An example illustration, where

observation stream xb violates the Condition (4.16), resulting in a sub-optimal perfor-

mance of the algorithm. Figure also shows that for higher values of Ω, the required

separation distance between the Ω values of observation streams decreases.
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r =
γ

(n− 1− γ(n− 2))
over the number of observation streams n for two values

of γ = 0.99 & 0.999. It is clear from the figure that r decreases as n increases.

Substituting for r in the Condition (4.16) we get Ω(xi) > Ω(x j)
r , ∀Ω(xi) > Ω(x j).

For observation streams with a higher Ω values, the condition
�
Ω(xi)> Ω(x j)

r
�
→�

Ω(xi)> Ω(x j)
�

, therefore the condition is most-likely to be met. Figure 4.9(b)

illustrates this with an example.4 The separation distance required between Ω(xa)

and Ω(xb) is larger than Ω(xc) and Ω(xd). In this case, the stream xb violates the

condition. But, how does this affect the working of the algorithm? Theorem 6 shows

that this results in a sub-optimal performance by the algorithm.

Definition 3. Let r =
γ

(n− 1− γ(n− 2))
. A stream x is r-dominated by another

stream x′ if ln (Ω(x))< r ln
�
Ω(x′)

�
.

Theorem 6. Let {πint
t
}t∈N denote the sequence of observation stream selection poli-

cies generated by the algorithm for ε = 1. Let Sr be the set of internal states

whose observation streams are not r-dominated by xl . If Conditions (4.13),(4.14)

and (4.15) hold, then, for t > t0, πint
t
(s) has two limits points equal to

�
1− ✶{sl}(s)

�

or
�

1− ✶Sr
(s)
�

, ∀s ∈ S int.

Theorem 6 shows that if a few observation streams violate the Condition (4.16),

then πint is not guaranteed to converge to the optimal policy (Theorem 3). It may

instead converge to a sub-optimal policy, which returns an action stay in all the

states whose observation streams violate the Condition (4.16) and switch in all the

remaining states. This differs from the optimal policy, where the action stay is

returned for the internal state sl corresponding to the easiest but not yet learned

observation stream and switch in all the other states. The suboptimal policy during

exploitation makes the algorithm converge to an abstraction encoding any of the

observation streams corresponding to the states in Sr , with an uniform probability.

For the example illustrated in Figure 4.9(b), the algorithm generates the following

sequence of abstractions with equal probability

1. Φ = {φxa

1 , φ
xb

2 , φ
xc

3 , φ
xd

4 , φ
xe

5 } (optimal),

2. Φ = {φxb

1 , φ
xa

2 , φ
xc

3 , φ
xd

4 , φ
xe

5 },

where φ
xa

1 denotes the abstraction learned corresponding to the stream xa. These

two sequences differ only in the first two terms. Therefore, for half the number of

trials the algorithm converges to the optimal sequence (first sequence) and the rest

to the sub-optimal sequence (second sequence) resulting in a sub-optimal behavior.

4The values of Ω are generally > 0.5
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Algorithm 7: Curious Dr. MISFA (X )

//Θ : IncSFA-ROC Estimator

//Φ : IncSFA Abstraction set

// bφ : Current adaptive IncSFA abstraction

//G : Gating Function

//πint : Input-stream selection policy

//Rint : Reward function

//Z : Normally distributed random variable with

mean δ and std. deviation σ

//τ,α,β ,δ,σ,L : Scalar constants

1 Φ0 ← {}, πint
0
← Random (), bφ ← 0, eR← 0

2 for t← 0 to∞ do

//Sense

3 sint
t
← current internal state

4 aint
t
← ε-greedy(πint

t
(sint

t
))

5 Take action aint
t

, observe next internal state sint
t+1
(=P int(sint

t
, aint

t
)) and τ

input-samples x

//Compute IncSFA-ROC error vector

6 {ξsfa
t+1

,ξroc
t+1
}= ‖Θ(x,G (x))−G (x)‖

//Compute the derivative of IncSFA-error

7 ξ̇sfa
t+1
← Backward-Difference(ξsfa

t+1
)

//Update the adaptive-abstraction

8 if 〈ξroc
t+1
〉τ > δ then

9 bφ ← Θ(x, bφ)
10 end

//Update the reward function

11 eR(sint
t

, aint
t

, sint
t+1
) =

α
�∑

τ−ξ̇sfa|L−L + β
∑
τ (Z(|δ− ξroc|)

�
+ (1−α)eR(sint

t
, aint

t
, sint

t+1
)

12 Rint
t+1
← eR/‖eR‖

//Update observation stream selection policy

13 πint
t+1
←Model-LSPI (S int,A int,P int, Rint

t+1
)

//Update abstraction set

14 if 〈‖Θ(x, bφ)− bφ‖〉τ < δ then

15 Φt+1 ← Φt ∪ bφ
16 πint

t+1
← Random (), bφ ← 0, eR← 0.

17 end

18 end
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1 2 3

4 5

6

Figure 4.10. An example room maze scenario.

4.4 Pseudocode

I showed how Curious Dr. MISFA solves the curiosity-based abstraction learning

problem presented in Section 4.2 under certain conditions. Algorithm 7 summa-

rizes Curious Dr. MISFA. A Python-based implementation of the algorithm can

be found at the URL: www.idsia.ch/~kompella/codes/cdmisfa.

html. The method as presented above can be used in several online learning appli-

cations and is especially suited for acquisition of abstractions and skills on humanoid

platforms. The next section discusses a few environments where the method requires

some modifications.

4.5 Design Considerations: Maze Environments

This section explores the application of Curious Dr. MISFA to environments such

as a room-maze where each room has a time-varying audio or a video source (Fig-

ure 4.10). Therefore, each room represents an internal state of Curious Dr. MISFA.

In such cases, the internal environment’s transition dynamics (see Section 4.3.1)

are not similar to that of a complete-graph model, i.e., the agent cannot switch be-

tween all the rooms without passing through the other rooms. I will present here

design modifications to the algorithm that enable the agent to take deterministic

actions (unlike the stochastic switch action) to move to the internal state with the

easiest encodable observation stream, in order to learn an abstraction. It is hard to

provide theoretical guarantees to these modifications because they depend on the

unknown transition model of the maze. Instead, experimental results are presented

in Section 4.6 to demonstrate the algorithm’s performance in such domains. The

following are the design modifications of the algorithm for maze environments:

Internal Environment’s Transition Model: Curious Dr. MISFA uses a model-

www.idsia.ch/~kompella/codes/cdmisfa.html
www.idsia.ch/~kompella/codes/cdmisfa.html
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Algorithm 8: Observation Stream Selection

//πintt : Current stay-switch policy

//πdintt : Current deterministic policy

//P int: Transition model for action-space A int

//P dint: Transition model for action-space A dint

//U(a, b): Uniform random variable in (a,b)

//U i(a, b): Uniform random integer in [a,b]

//sintt : Current internal environment state

//ε,ν: Scalar variables

1 if U(0, 1)< ε then

2 sint
t+1
=P int(sint

t
, U i(0, 1))

3 else

4 if U(0, 1)< ν then

5 sint
t+1
=P int(sint

t
,πint

t
(sint

t
))

6 else

7 sint
t+1
=P dint(sint

t
,πdint

t
(sint

t
))

8 end

9 end

based least-squares temporal difference learning to learn the observation stream se-

lection policy (see Section 4.3.5). Therefore the transition model for general maze

environments needs to be learned a priori. It can be learned either using lookup

tables in deterministic environments or using Bayesian inference in stochastic envi-

ronments.

Observation Stream Selection Policy: A drawback of using an ε-greedy strat-

egy over the stay-switch policy is that for a large number of observation streams

in maze environments, it takes a considerable amount of time to get to a desired

internal state. This can be improved by simultaneously learning another policy

πdint defined over the same internal state space S int but with a deterministic action-

space (A dint = {adint
1

, ..., adint
n
}). Let P dint denote the transition model of the in-

ternal environment for the action-space A dint. When the agent shifts to a state

sint
i

, ∀i ∈ {1, ..., n}, this implies that the agent took an action adint
i

, and vice-versa.

The switch action stochastically selects an observation stream, while the action

adint
i
∈ A dint deterministically selects the observation stream xi. The agent there-

fore maintains a pair of value functions, one for the stay-switch action space (Eq.
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4.10) and the other for the deterministic action-space (A dint):

bQπdint
t = Ψd

�
ΨT

d
(Ψd − γd PdintΠdint

t
Ψd)
�−1
ΨT

d
Rdint

t
(4.19)

πdint
t+1
(s) = arg max

adint

bQπdint
t (s, a), s ∈ S int, a ∈A dint (4.20)

where Ψd denote the basis functions to represent the (sint, adint, rdint) tuple, Pdint de-

notes the transition-matrix for the action-spaceA dint and Πdint
t

describes the current

deterministic observation stream selection policy πdint
t

.

The agent then chooses between the the policies πint and πdint probabilistically

to get to the desired states quickly. The observation stream selection by the agent at

any time t is summarized in Algorithm 8.

Reward Function: For maze environments, the desired target internal state may

not be reachable in few time-steps. In such cases the discount-factor γ may lead

to suboptimal behavior [Mahadevan, 1996]. To minimise this, average-reward rein-

forcement learning approaches [Mahadevan, 1996] can be used. I use a simple trick

by reducing the reinforcement function to a binary state-reward function as:

Rint
t
(s) = ✶{sl}(s), sl = arg max

si

�eRt(si, sta y, .)
�

, s ∈ S int (4.21)

Therefore, at any time t, the observation stream selection policy learned using this

reward function is a shortest path to get to the internal state corresponding to the

maximum reward.

Basis Functions: I use linear function approximation methods to find approximate

value functions for large discrete environments. The value function is represented

as a linear combination of basis functions. The selection of basis functions plays an

important role in solving the problem. Krylov Basis Functions [KBFs; Petrik, 2007]

are reward-sensitive basis-vectors (K ), which are constructed by taking the product

of reward function (R) with geometric powers of transition matrix (P) of a policy:

K = {R, PR, P2R, ...}. (4.22)

Proto-Value Basis Functions [PVFs; Mahadevan and Maggioni, 2007] are however

reward-insensitive basis-vectors, which are constructed by finding the eigenvectors

of the symmetric graph Laplacian matrix based on the neighborhood relationsips

among the states. PVFs capture invariant subspaces (bottlenecks) of the model tran-

sition matrix. However, they lead to poor approximations when the reward func-

tion is spiky, because the basis vectors are smooth. While KBFs tend to work

well for spiky reward functions, they require costly recomputations of the basis
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functions whenever the reward function changes. Augmented Krylov Basis Func-

tions [AKBFs; Petrik, 2007] combines the methods to take advantage of both their

approximation properties. This basis is constructed by augmenting a finite number

of Krylov-basis and proto-value basis vectors, followed by an iterative orthogonal-

ization using Arnoldi iteration technique [Arnoldi, 1951]. I use AKBFs (Ψ) for

evaluating the stay-switch observation stream selection policy πint
t

and the determin-

istic observation stream selection policy πdint
t

.

These design modifications together enable Curious Dr. MISFA to be applied

to maze environments with time-varying observation streams. The next section

presents results of experiments conducted in such environments.

4.6 Experimental Results

I present here experimental results to illuminate the algorithm’s performance in dif-

ferent environments. These results show that the algorithm learns slow feature ab-

stractions in the order of increasing learning difficulty, as predicted by the theoretical

analysis presented in Section 4.3.7.

4.6.1 Proof of Concept: Synthetic Signals

In this experiment, the convergence of the algorithm is illustrated for an input that

consists of three 2D nonlinear oscillatory audio streams X = {x1,x2,x3}, each en-

codable by IncSFA:

x1 :

¨
x1(t) = sin(4 t −π/4.)− cos(44 t)2

x2(t) = cos(44 t)
, (4.23)

x2 :

¨
x1(t) = sin(3 t) + cos(27 t)2

x2(t) = cos(27 t)
, and (4.24)

x3 :

¨
x1(t) = cos(12 t)

x2(t) = cos(2 t) + cos(12 t)2
, (4.25)

where t takes 500 discrete values in [0, 2π]. The environment has three inter-

nal states S int = {sint
1

, sint
2

, sint
3
} associated with the observation streams. Each ob-

servation stream has 500 abstracted states S Φ = {sΦ
1
, ..., sΦ

500
}, where sΦ

i
repre-

sents the angle 2π ∗ 500/i. Figure 4.11(a) illustrates the environment. The slow-

est feature in the stream x1 is y1(t) = x1(t) + x2(t)
2 = sin(4 t − π/4.). For

the streams x2 and x3, the features are y2(t) = x1(t) − x2(t)
2 = sin(3 t) and

y3(t) = −x1(t)
2 + x2(t)

2 = cos(2 t) respectively. To extract these slow features,
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each observation stream is expanded via a polynomial expansion of degree 2 to

a 5 dimensional stream [Wiskott and Sejnowski, 2002]. The expanded streams

have the following curiosity function values: Ω1 = 0.98979, Ω2 = 0.99611, and

Ω3 = 0.99924. Therefore, observation stream x1 is the easiest signal to encode

followed by x2 and then x3.

Experiment parameters: I use a fixed parameter setting for the entire experi-

ment. CCIPCA learning rate is equal to 1/t with amnesic parameter set to 0.4, while

the MCA learning rate is 0.05. The output dimension is set to 1, so only the first

IncSFA feature is used as an abstraction. However, more number of features can be

used if desired. There are a total of 500 ROC clustering nodes estimating the slow

feature output for each of the 500 abstracted states (see Section 4.3.2). Each cluster-

ing implementation has its maximum number of clusters set to N max = 2, such that

it can encode multiple slow feature values for each abstracted state. Higher values

can be used, however, very high values may lead to spurious clusters. The estima-

tion error threshold, below which the current module is saved and a new module is

created, is set to a low value δ = 0.3. The amnesic parameter is set to ν amn = 0.2.

The initial ε-greedy value is set to ε = 1.1, with a 0.998 decay multiplier. How-

ever, when ε < 0.9, the decay multiplier is set to 0.992 to speed up the experiment.

I use indicator basis functions (Ψ) for LSPI. The discount factor γ is set equal to

0.99. The window-averaging time constant is set to τ = 100, that is, 100 sample

observations are used to compute the window-averaged progress error ξ and the

corresponding curiosity reward. The values for σ, β , L , α are set to 50, 1, 200,

0.0198, respectively to satisfy the convergence Conditions (4.13)-(4.16). Refer to

the proof of Theorem 5 for more details on setting these parameters.

The dynamics of the algorithm can be observed by studying the time varying

reward function Rint and the ROC estimation error ξroc. Figure 4.11(b) shows the

reward function for a single run of the experiment. Solid lines represent the reward

for the action stay in each state sint
i

(Rint(sint
i

, stay, sint
i
)), while the dotted lines rep-

resent the marginalized reward for the action switch at each state sint
i

, (1

2

∑
j
Rint(sint

i
,

switch, sint
j
)). For the sake of explanation, the learning process can be thought of

as passing through three phases, where each phase corresponds to learning a single

abstraction module.

Phase 1: At the beginning of Phase 1, the agent starts exploring by executing either

stay or switch at each state. After a few hundred algorithm iterations, the reward

function begins to stabilize and is such that Rint(sint
1

, stay)> Rint(sint
2

, stay)> Rint(sint
3

,

stay) > 0, ordered according to the learning difficulty of the observation streams.

However, the reward components for the switch action are either close to zero or

negative. Therefore, the policy πint converges to the optimal policy (i.e. to stay at
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Figure 4.11. Synthetic Signals: See text for details. (Figures are best viewed in color)

the state corresponding to the easiest observation stream x1 and switch at every other

state). As ε decays, the agent begins to exploit the learned policy, and the adaptive

IncSFA-ROC abstraction bφ converges to φ∗ (slow feature corresponding to the ob-

servation stream x1). The ROC estimation error (Figure 4.11(c)) decreases and falls

below the threshold δ, at which point, the abstraction is added to the abstraction
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Figure 4.12. Results of the experiment conducted over 20 Trials. See text for details.

(Figures are best viewed in color)

set Φ. The increase in the reward value of Rint(sint
1

, stay) near the end of the phase

is caused by the second term (
∑
τ (Z(|δ− ξroc|)) in Eq. (4.9). Both ε and Rint are

reset and the algorithm enters Phase 2 at (t ≈ 75k).

Phase 2: The agent begins to explore again, however, it does not receive any reward

for the (sint
1

, stay) tuple because of the gating system. After a few hundred algorithm

iterations, Rint(sint
2

, stay) > Rint(sint
3

, stay) > Rint(sint
1

, stay) = 0, the adaptive abstrac-

tion converges, but to the slow feature corresponding to the observation stream x2.

Phase 3: The process continues again until the third abstraction is learned.

Figure 4.12 shows results of the experiment conducted for 20 trials with different
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Figure 4.13. 10 Different Input Signals: See text for details. (Figures are best viewed

in color)

random initializations. Figure 4.12(a) shows the average ROC estimation error plot,

where the shaded region represents the standard deviation. Figure 4.12(b) shows the

reward function for the first abstraction module until a new module is created. It is

clear that for all the 20 trials the algorithm learns the abstraction corresponding to

the easiest signal x1 as its first abstraction module. Figures 4.12(c)-(d) show plots of

the reward function for the second and third abstraction module from their time of

creation until they are frozen. Figures 4.12(e)-(g) show the reward function (clipped

until the shortest trial time) averaged over the 20 trials for each module. This exper-

iment result shows that the algorithm learns abstractions for the observation streams

in the order of their learning difficulty, which supports the theoretical analysis of the

problem.

4.6.2 10 Different Input Signals

The next experiment demonstrates that the algorithm scales well to a larger num-

ber (10) of different input signal streams (similar to the ones in Experiment 1).

These streams have the following increasing curiosity-function values (Ω1 − Ω10):

(0.981140, 0.984279, 0.987169, 0.989791, 0.991922, 0.993411, 0.995511, 0.996260,

0.997685, 0.998256). Observation stream x1 is the easiest to learn compared to the

other streams. I use parameters similar to the previous experiment, except for the

decay multiplier which is set to 0.99986 and is reset to a value 0.99 when ε < 0.9.

This was done to speed up the experiment.

The experiment is conducted for 20 trails with different random seed initializa-

tion. In 19 out of the 20 trials, the algorithm successfully converged to the opti-

mal solution. Figure 4.13 shows the average and standard-deviation of the reward
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Figure 4.14. Reward function of the unsuccessful trial. (Figure is best viewed in color)

function of module-1 for 20 trials. Clearly, the expected reward function stabilizes

to a state such that: Rint(sint
1

, stay) > Rint(sint
2

, stay) > Rint(sint
3

, stay) > Rint(sint
4

,

stay) > Rint(sint
5

, stay) > Rint(sint
6

, stay) > Rint(sint
7

, stay) > Rint(sint
8

, stay) > Rint(sint
9

,

stay)> Rint(sint
10

, stay)> 0.

However, for the one unsuccessful trial an abstraction corresponding to the ob-

servation stream x3 was learned as the first abstraction. Figure 4.14 shows the reward

function for the unsuccessful trial. During exploration, the reward function did not

yet stabilize in the order of Ω values of the observation streams. Therefore, as the ε

of the ε-greedy strategy quickly decreased to zero, the result converged to a subop-

timal solution. The result can be improved by using a larger decay multiplier. In this

experiment, I showed the result for only the first module here since other modules

follow a similar trend (if not better).

4.6.3 Maze Environment with Noisy Streams

Here, I test the design modifications presented in Section 4.5 on a bounded 1D-chain

maze environment and in the presence of uncompressible noisy streams as shown in

Figure 4.15(a). Each internal state corresponds to a room with an audio source (see

Figure 4.10). Each internal state has only two neighbors, except for the boundary

states. Action switch shifts the agent’s internal state to one of its 2 neighboring

states. States sint
1

and sint
7

are associated with a white noise stream, and sint
3

and sint
5

are

associated with two signal streams, shown in Eq. (4.23) and Eq. (4.24), respectively.

The rest of the states have no observation streams (zero value). The 2D observation
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Figure 4.15. Maze Environment with Noisy Streams: See text for details. (Figures

are best viewed in color)

streams are expanded to 5 dimensions to handle non-linearity in the input. Based on

the Ω values, observation stream x1 is the easiest signal to encode followed by x2

and then x3.

Experiment parameters: Since, the environment is a maze, I use the design

changes to the algorithm as discussed in Section 4.5. Action-space A dint is equal

to {Left, Home, Right}. Left and Right actions shifts the agent’s state from sint
i

to

sint
i−1

and sint
i+1

respectively, while Home action makes the agent to remain in the same
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state. IncSFA-ROC parameters are set to the same values as in Experiment 4.6.1.

The initial ε-greedy value is set to ε= 1.1, with a 0.999 decay multiplier. However,

when ε < 0.9, the decay multiplier is set to 0.992 to speed up the experiment. I

use indicator basis functions (for both Ψ and Ψd) for LSPI. γ is set to 0.99 and

γd is set to 0.9. The values for τ, σ, β , L , α are set to the same values as in

Experiment 4.6.1.

The experiment is conducted for 20 trails with different random seed initializa-

tions. Figures 4.15(b)-(c) show the reinforcement function (see Section 4.3.4) over

time for each trial and Figures 4.15(d)-(e) show the reinforcement function averaged

over the 20 trials. The average reinforcement values corresponding to the noise are

close to zero. Figures 4.15(f)-(g) show the average thresholded reward function over

time (see Section 4.5). The algorithm successfully converges to the optimal solution

in all the 20 trials avoiding the noisy streams. The two abstractions corresponding

to the observation streams x3 and x5 are learned sequentially.

4.6.4 Large Maze Environment with Duplicated Streams

Here, I evaluate the algorithm on a larger maze environment as shown in the Fig-

ure 4.16(a). The environment has 100 grid points. Each grid point topologically

represents a room (see Figure 4.10) with an arbitrarily associated audio stream such

that, there are in total 10 grid points each of x1 (Eq. (4.23)), x2 (Eq. (4.24)) and

a random stream. The remaining grid points are associated with an empty (zero)

stream. The agent is unaware of the audio stream distribution and can traverse along

the grid points to observe samples from the associated time-varying audio streams.

The objective here is to learn an abstraction corresponding to x1 first by moving into

any of the grid points containing x1, followed by an abstraction for x2.

Since there are in total 100 observation streams, Curious Dr. MISFA’s environ-

ment has 100 internal states (S int = {sint
1

, ..., sint
100
}). Each internal state has only four

neighbors (except for the boundary states). Action switch shifts the agent’s state to

one of its 4 neighboring states.

Experiment parameters: Similar to Experiment 3, I use the design changes

to the algorithm as discussed in Section 4.5. Action-space A dint is {North, South,

Home, East, West}. IncSFA-ROC parameters are set to the same values as in Ex-

periment 4.6.1. The initial ε-greedy value is set to ε = 1.1, with a 0.999 decay

multiplier. However, when ε < 0.9, the decay multiplier is set to 0.99 to speed up

the experiment. I use Augmented Krylov basis functions (see Section 4.5), with 10

Krylov bases, 30 LEM bases for Ψ and 0 Krylov bases, 40 LEM bases for Ψd . γ is

set to 0.99 and γd is set to 0.85. The values for τ, σ, β ,L and α are set to the same

values as in Experiment 4.6.1.
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Figure 4.16. Large Maze with Duplicated Streams: See text for details. (Figures are

best viewed in color)

The secondary policyπdint, learned during the exploration phase (ε¦ 1), enables

the agent to get to the desired states quickly using the deterministic action-space

A int when ε < 1. The experiment is conducted for 20 trails with different random

initializations. Figures 4.15(b)-(c) show the plot of reinforcement function over time

for each trial. Each red curve represents the maximum reward of all the 10 states

associated with the audio stream x1 over time for each trial. While the green and the

blue curves represent the same but for streams x2 and random stream respectively.

In 16 out of the 20 trials, an abstraction corresponding to the audio stream x1 (Eq.

(4.23)) is learned first followed by audio stream x2 (Eq. (4.24)).

This experiment demonstrates that Curious Dr. MISFA can successfully be ap-

plied to maze environments. The algorithm learns an abstraction while simultane-
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Figure 4.17. This experiment uses image sequences from the iCub’s cameras, while

it moves its arm and interacts with objects. See text for details.

ously developing a policy to get to the grid point with the easiest learnable observa-

tion stream.

4.6.5 An iCub Experiment: High-Dimensional Image Streams

This experiment uses an embodied agent (iCub) with real high-dimensional images

(grayscale 75× 100) from the robot’s eyes. There are two video streams {x1,x2},
where each is generated by the iCub’s exploration via random movement of its

shoulder joint, causing the outstretched hand to eventually displace the single object

in its field of view. The iCub is not given any prior knowledge about the objects, it-

self, or any concepts at all. It merely observes the pixel values, and uses Curious Dr.

MISFA for learning and decision making. Since there are two observation streams,

Curious Dr. MISFA’s environment has two internal states: S int = {sint
1

, sint
2
}. In sint

1
,

the object is a cup, which topples over upon contact with very predictable outcome.

In the other state sint
2

, the object will roll in different directions.

Experiment parameters: CCIPCA learning rate is equal to 1/t with amnesic
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Figure 4.18. Example emergence of object-centric slow features for both observation

streams. The final result encodes two states of each object — upright or displaced.

parameter set to 0.4, while the MCA learning rate is 0.01. CCIPCA did variable

size dimension reduction by calculating how many eigenvalues would be needed

to keep 98% of the input variance (typically this was between 10 and 15) so the

7500 pixels could be effectively reduced to only about 10 dimensions. The output

dimension of IncSFA is set to 1. Each clustering implementation has a maximum

number of clusters set to Nmax = 3. The estimation error threshold, below which

the current module is saved and a new module is created, is δ = 2.3. The amnesic

parameter is set to ν amn = 0.2. The initial ε-greedy value is set to ε = 0.6, with a

0.93 decay multiplier. The experiment is carried out in an episodic manner wherein

each episode involves random exploration and an object-robot interaction event and

has between 50-250 images. At the beginning of each episode, the object is always

replaced in the same position.

Three example images from each of the two observation streams are shown in

Figure 4.17(a). The stream x1 is easier to learn than x2, since the Ω value for x1

is 0.9982, and the Ω value for the x2 is 0.9988. This experiment is an example of

the case n = 2 (see Section 4.3.7), where the stochastic switch action is equivalent

to a deterministic switch to the other state. The slowest feature here would encode

the mixture-signal and extract the identity of the two video streams, which is to

be expected when the input signals from widely different clusters [Zhang and Tao,

2012]; in a sense this is similar to a multiple rooms case [Mahadevan and Maggioni,

2007], where the features code for room ID. A simple hack (not required for n> 2):

in order to prevent learning progress from continual switching, the following rule
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was implemented. When the agent decides to remain in its current internal state,

it experiences two subsequent episodes, but when it decides to switch to the other,

it only experiences one. In other words, the agent is given more time to learn by

staying rather than by switching.

15 experimental runs were performed. Figure 4.17(b)-(d) show results. Part

(b) shows the average estimation error during the first module’s learning, while part

(c) shows average estimation error for the second. In part (d), one can see that

an abstraction for the stream x1 was indeed mostly learned first (in 14 of the 15

runs, this was the case). Examples of the learned slow feature outputs over time

are shown in Figure 4.18. Both representations eventually encode whether the

object is displaced or not. Most of the information in the image sequences can

be broken down into three components: a baseline (the background), the object, and

the arm. The object changes slower than the arm, so it is preferentially extracted

by SFA. Moreover, the object-based features are invariant to the arm’s position.

Generalization is also possible in a limited sense. If the arm were replaced by some

other object (e.g., a stick), the feature output would not be perturbed. For more

robust generalization, better pre-processing is probably needed, as is typical with

appearance-based vision techniques [Cui and Weng, 2000].

These experimental results show that the Curious Dr. MISFA algorithm learns

slow feature abstractions for the observation streams, ranging from simple oscilla-

tory signals to high-dimensional visual inputs, in the order of increasing learning

difficulty. These empirical results support the theoretical justifications presented in

Section 4.3.7.

4.7 Neural Correlates to Curious Dr. MISFA

In this section, I will discuss some of the neurophysiological systems realized in

the brain, whose functional roles mirror those of Curious Dr. MISFA; namely, the

interactions between the neuromodulatory systems involved in intrinsic motivation,

task engagement, task switching, and value approximation. The ideas presented

in this section were produced in collaboration with Matthew Luciw and Sohrob

Kazerounian.

4.7.1 SFA and Competitive Learning — Entorhinal Cortex and Hip-

pocampus

Slow Feature Analysis variants have been used to simulate representation learning

in a number of biological scenarios. Based on the general principle that under-
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lying driving forces manifest through slow changes in sensory observations, the

features that emerge from SFA often encode important invariants. Hierarchical

SFA has been shown to develop grid cells from high-dimensional visual observa-

tion streams [Franzius et al., 2007]. Grid cells, found in the entorhinal cortex [EC;

Hafting et al., 2005], have a pattern of firing that effectively represent hexagonal

codes of any two-dimensional environment. As such, grid cells are effective general

representations for spatial navigation in typical environments.

A competitive learning layer over the top-layer of slow features leads to fea-

tures acting as place cells or head-direction cells, depending on what changes more

slowly from the observation sequences. A place cell will fire when the animal is in

a specific location in the environment, typically invariant to its heading direction.

Head-direction cells fire when the animal faces a certain direction, no matter what

coordinate position it is in. Place cells and head-direction cells are found in the

hippocampus [O’Keefe and Dostrovsky, 1971; Taube et al., 1990], which has input

from EC. It’s been hypothesized that the hippocampus acts as a relatively fast en-

coder of specific, episodic information on top of the cortex, which learns general

structure from data over a long period [Cohen and O’ Reilly, 1996] — “It has been

proposed that this universal spatial representation might be recoded onto a context-

specific code in hippocampal networks, and that this interplay might be crucial for

successful storage of episodic memories [Fyhn et al., 2007].”

SFA’s biological plausibility was furthered by IncSFA, which avoids batch pro-

cessing and has Hebbian and anti-Hebbian updating equations. Hierarchical SFA [Franz-

ius et al., 2007] and Hierarchical IncSFA [Luciw et al., 2012], with competitive

learning on top, was shown to develop place and head-direction cell representations.

Inspired by these results, the structure used for learning representations in Curious

Dr. MISFA is as follows: A slow feature learner (possibly hierarchical) for global

features (via IncSFA), inputs into a competitive learner for development of local

features (via Robust Online Clustering).

4.7.2 Neuromodulatory Subsystems for Intrinsic Reward and Task

Switching

Intrinsic Rewards: Dopamine and Learning Progress

Dopaminergic projections originate from the ventral tegmental area (VTA). Dopamine

has been implicated in reward prediction [Schultz et al., 1997], leading to plausible

relation to the theory of reinforcement learning — specifically, dopamine may be

acting as a temporal-difference (TD) error signal. However, this account remains

controversial [Redgrave et al., 1999; Kakade and Dayan, 2002]. A major deviation
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from the dopamine as TD-error theory comes from data implicating dopamine in re-

sponding to novel salient stimuli [Schultz, 1998; Redgrave and Gurney, 2006], even

for stimuli that are not predictive of reward. Dopaminergic responses to such stimuli

fade over subsequent trials. It has been proposed that this characteristic serves the

purpose of a “novelty bonus” — e.g., a reward addendum serving as an “optimistic

initialization”.

These data present intriguing correlations to the curiosity theory. Dopamine

release in response to novel stimuli could potentially signal a predicted intrinsic

reward — an expectation of learning progress. Could DA in some situations signal

the intrinsic reward? Dopamine’s potential role in intrinsic motivation has been

discussed before [Redgrave and Gurney, 2006; Kaplan and Oudeyer, 2007], but not

with respect to the formal theory of curiosity [Schmidhuber, 2010b], which predicts

that intrinsic reward should be proportional to compression progress. Computational

models in neuroscience often treat intrinsic reward as resulting from the novelty of

a stimulus. If intrinsic reward really does result from novelty, we would expect

persistent high levels of dopamine in response to unpredictable noisy stimuli (as it

remains novel from moment to moment). On the other hand, if intrinsic rewards

encode compression progress, we would expect decreases in the level of dopamine

as the predictive model becomes unable to learn anything more about the structure

of the noise.5

Engagement and Disengagement (and Switching): Norepinephrine

Neurons of the locus coeruleus (LC), in the brainstem, are the sole source of nore-

pinephrine (NE). NE is linked to arousal, uncertainty, vigilance, attention, moti-

vation, and task-engagement. The LC-NE system is more traditionally thought to

affect levels of arousal, but more recently has been implicated in optimization of

behavioral performance [Usher et al., 1999; Aston-Jones and Cohen, 2005; Sara,

2009].

In that context, the activity of the LC-NE system can be understood as modula-

tion of exploration-exploitation. The tonic differences in LC-NE response are asso-

ciated with levels of arousal. Tonic NE response is correlated with task performance

levels [Usher et al., 1999]. Low tonic activity coincides with low attentiveness and

alertness [Aston-Jones et al., 1991], while high tonic activity coincides with agi-

tation and distractibility [Aston-Jones and Cohen, 2005]. Good task performance

coincides with an intermediate tonic level during which phasic bursts of activity are

observed, while poor task performance due to distraction is associated with high

tonic activity. In phasic mode during periods of intermediate tonic NE activity, NE

5To my knowledge, this has not been tested yet.
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is released in response to task-relevant events [Dayan and Yu, 2006]. As suggested

by Usher et al. and others [Usher et al., 1999; Aston-Jones and Cohen, 2005], the

phasic modes might correspond to exploitation, whereas high tonic states of NE

activity might correspond to exploration.

When it is beneficial for the agent to remain engaged in the current task, the tonic

NE level remains moderate, and only relevant task stimuli will be salient. However,

when it is not beneficial to remain engaged in the current task, the NE level raises

and task-irrelevant stimuli become more salient. This drives the agent to distractibil-

ity, and task performance suffers. Attending to some distractor stimuli could have

the effect of causing the agent to switch to another task in which this distractor be-

comes relevant, ostensibly with the purpose of exploring among available tasks (i.e.,

it “throws the ball in the air so another team can take it” [Aston-Jones and Cohen,

2005]).

In Curious Dr. MISFA, the agent’s two internal-actions (stay or switch) and the

reasons they are taken link to the NE-driven task engagement/disengagement model.

Boredom (low NE) indicates that a good representation has already been learned,

leading to low estimation error and low potential intrinsic reward. Distractibility

(high NE) indicates that the errors are too high, not decreasing quickly enough, or

cannot be reduced. In this case, it becomes valuable to switch and find some other

source of information, where learning may progress faster. When the agent has

found a good source, the estimation errors decrease regularly, providing intrinsic

reward that leads to a high value estimate and a desire to stay in that state.

4.7.3 Frontal Cortex: Value Function and Representation Selec-

tion

The NE and DA neuromodulatory systems each have reciprocal connectivity with

the prefrontal cortex — executive areas, which deal with cognitive aspects such as

decision making, and top-down control of other functions, such as selective atten-

tion [Miller, 2000]. If the LC-NE system is handling task-engagement and disen-

gagement based on some value judgement, then this system needs to be controlled

by another system that is estimating these values. The prefrontal cortex (PFC) plau-

sibly plays a role in value estimation, and might use the utility information to provide

top-down regulation of the activities of the LC neurons [Ishii et al., 2002].

PFC and nearby structures, specifically, the anterior cingulate cortex (ACC) and

the orbital frontal cortex (OFC), are implicated in value-based judgements. The

ACC is involved in error detection (i.e., recognizing a prediction error) and estimat-

ing the costs of these errors [Bush et al., 2002]. OFC is thought to be of import
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in the motivational control of goal-directed behaviors [Rolls et al., 1996] — OFC

damage leads to responses to objects which are no longer rewarding [Meunier et al.,

1997; Rolls et al., 1994]. The dorsolateral pre-frontal cortex (DLPF) is implicated

in value-based working memory [Rao et al., 1997]. Thus, these structures could

possibly work together to estimate a value function, in the RL sense [Ishii et al.,

2002].

Another important property of PFC is to maintain an appropriate task representa-

tion, i.e., imposing internal representations that guide subsequent performance, and

switching these for another when it is no longer appropriate [Miller, 2000; Cohen

et al., 2004]. This property requires mechanisms to keep goal-relevant information

(i.e., what should be considered salient and what should be considered a distrac-

tor) enabled in resonance with lower structures. Further, it requires a mechanism to

maintain a context despite bottom-up disturbances, and a mechanism to switch the

context. The PFC has connections from and to higher-order associative cortices, so

it is in a good position to impose task-relevant representations from the top-down.

Such “executive attention” enables memory representations to be “maintained in a

highly accessible state in the presence of interference, and these representation may

reflect action plans, goal states or task-relevant stimuli in the environment [Kane

and Engle, 2002]”.

4.8 Conclusion

In this chapter, I presented an autonomous curiosity-driven modular incremental

slow feature learning algorithm that learns invariant slow feature abstractions from

multiple time-varying input observation streams sequentially, in the order of in-

creasing learning difficulty. The method continually estimates the initially unknown

learning difficulty through intrinsic rewards generated by exploring the observation

streams using a stay-switch action selection mechanism. The architecture of the

method includes (a) a reinforcement learner that generates policies to select an ob-

servation stream based on the intrinsic rewards, (b) an adaptive IncSFA module that

updates an abstraction based on the incoming observations and (c) a gating system

that prevents encoding inputs that have been previously encoded. I formalized the

learning problem as an optimization problem and also presented a formal analysis

to prove that the Curious Dr. MISFA algorithm converges to the optimal solution

under a few mild conditions. Experimental results show that the method success-

fully learns abstractions in the order of increasing learning difficulty, over different

experimental settings. Each learned abstraction encodes some previously unknown

regularity in the input observations, which can then be used as a basis for acquiring
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new skills. The next chapter presents a framework to translate the learned abstrac-

tions into skills.
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Chapter 5

Continual Curiosity-Driven Skill

Acquisition

In Chapter 4, the Curious Dr. MISFA algorithm was presented, which actively learns

multiple slow feature abstractions in the order from least to most costly, as pre-

dicted by the theory of artificial curiosity. Each abstraction learned encodes some

previously unknown regularity in the input observations, which forms a basis for

acquiring new skills. In this chapter, I will present the Continual Curiosity-Driven

Skill Acquisition [CCSA; Kompella et al., 2014b] framework, which translates the

abstraction learning problem of Curious Dr. MISFA to a continual skill acquisition

problem. Using CCSA, a humanoid robot driven purely by its intrinsic motivation

can continually acquire a repertoire of skills that map the many raw-pixels of image

streams to action-sequences.

5.1 Overview

Figure 5.1 illustrates the overall CCSA framework. The learning problem associated

with CCSA can be described as follows: From a set of pre-defined or previously ac-

quired input exploratory behaviors that generate potentially high-dimensional time-

varying observation streams, the objective of the agent is to (a) acquire an easily

learnable yet unknown target behavior and (b) re-use the target behavior to acquire

more complex target behaviors. The target behaviors represent the skills acquired

by the agent. A sample run of the CCSA framework to acquire a skill is as follows

(see Figure 5.1):

(a) The agent starts with a set of pre-defined or previously acquired exploratory

behaviors. I make use of the options framework [Sutton et al., 1999] to for-

87
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Figure 5.1. High-level control flow of the Continual Curiosity-Driven Skill Acquisition

(CCSA) framework. (a) The agent starts with a set of pre-defined or previously ac-

quired exploratory behaviors (represented as exploratory options). (b) It makes high-

dimensional observations upon actively executing the exploratory options. (c) Using

the Curious Dr. MISFA algorithm, the agent learns a slow feature abstraction that en-

codes the easiest to learn yet unknown regularity in the input observation streams.

(d) The slow feature abstraction outputs are clustered to create feature states that are

augmented to the agent’s abstracted state space. (e) A Markovian transition model of

the new abstracted state space and an intrinsic reward function are learned through

exploration. (f) A deterministic policy is then learned via model-based Least Squares

Policy Iteration (Model-LSPI) and a target option is constructed. The deterministic

target-option’s policy is modified to a stochastic policy in the agent’s new abstracted

states and is added to the set of exploratory options.

mally represent the exploratory behaviors as exploratory options (see Sec-

tion 5.2 for a formal definition of the terminology used here).

(b) The agent makes high-dimensional observations through a sensor-function,

such as a camera, upon actively executing the exploratory options.

(c) Using the curiosity-driven modular incremental slow feature analysis (Curious

Dr. MISFA) algorithm, the agent learns a slow feature abstraction that encodes

the easiest to learn yet unknown regularity in the input observation streams
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(see Section 4).

(d) The slow feature abstraction outputs are clustered to create feature states that

are augmented to the agent’s abstracted state space, which contains previously

encoded feature states (see Section 5.3.3).

(e) A Markovian transition model is learned by exploring the new abstracted state

space. The reward function is also learned through exploration, with the agent

being intrinsically rewarded for making state transitions that produce a large

variation (high statistical variance) in slow feature outputs. This specialized

reward function is used to learn action-sequences (policy) that drives the agent

to states where such transitions will occur.

(f) Once the transition and reward functions are learned, a deterministic policy

is learned via model-based Least-Squares Policy Iteration [LSPI; Lagoudakis

and Parr, 2003]. The learned policy and the learned slow feature abstraction

together constitute a target option, which represents the acquired skill (see

Section 5.3.3).

(f)-(a) The deterministic target-option’s policy is modified to a stochastic policy in

the agent’s new abstracted states and is added to the set of exploratory options

(see Section 5.3.4). This enables the agent to reuse the skills to acquire more

complex skills in a continual open-ended manner [Ring, 1994, 1997].

CCSA is a task-independent algorithm, i.e., it does not require any design mod-

ifications when the environment is changed. However, CCSA makes the following

assumptions: (a) The agent’s default abstracted state space contains low-level kine-

matic joint poses of the robot learned offline using Task Relevant Roadmaps [Stol-

lenga et al., 2013]. This is done to limit the iCub’s exploration of its arm to a plane

parallel to the table. This assumption can be relaxed resulting in a larger space of

arm exploration of the iCub, and the skills thus developed may be different. (b)

CCSA requires at least one input exploratory option. To minimize human inputs

into the system, in the experiments at t = 0, the agent starts with only a single input

exploratory option, which is a random-walk in the default abstracted state space.

However, environment or domain specific information can be used to design sev-

eral input exploratory options in order to shape the resulting skills. For example,

random-walk policies mapped to different sub-regions in the robot’s joint space can

be used.

The rest of the chapter is organized as follows. Section 5.2 presents a theo-

retical formulation of the learning problem associated with the CCSA algorithm.

Section 5.3 discusses different parts of the CCSA algorithm in detail. Section 5.4
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presents the pseudo-code of the algorithm along with other implementation details.

Section 5.5 presents experimental results conducted using an iCub humanoid and

Section 5.6 concludes.

5.2 Learning Problem Formalized

In this section, I will present a theoretical formulation of the learning problem as-

sociated with the Continual Curiosity-Driven Skill Acquisition (CCSA) framework.

I will first formalize the curiosity-driven skill acquisition problem and then later in

the section I will present a continual extension of it.

5.2.1 Curiosity-Driven Skill Acquisition Problem

Given a fixed set of input exploratory options, which generate potentially high-

dimensional observation streams that may or may-not be unique, the objective is to

acquire a previously unknown target option corresponding to the easily-encodable

observation stream. Figure 5.2 illustrates the learning process. The learning process

iterates over the following steps:

(a) Estimate the easily-encodable yet unknown observation stream, while simulta-

neously learning a compact encoding (abstraction) for it.

(b) Learn an option that maximizes the statistical variance of the encoded abstraction

output. The problem is formalized as follows:

Notation:

Environment: An agent is in an environment that has a state space S . It can take

an action a ∈ A and transition to a new state according to the transition-model

(environment dynamics) P : S ×A → S . The agent observes the environment

state s as a high-dimensional vector, x ∈ RI , I ∈ N.

Abstraction: Let Θ denote some online abstraction-estimator that updates a

feature-abstraction φ, where Θ(x,φ) returns an updated abstraction for an input

x. The abstraction φ : x 7→ y maps a high-dimensional input observation stream

x(t) ∈ RI to a lower-dimensional output y(t) ∈ RJ , J ≪ I , J ∈ N, such that y(t) =

φ (x(t)).

Abstracted State Space: As defined earlier in Section 4.3.1, the agent’s ab-

stracted state space S Φ contains the space spanned by the outputs y of all the ab-

stractions that were previously learned using Θ.
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Figure 5.2. Curiosity-Driven Skill Acquisition: Given a fixed set of input exploratory op-

tions (represented by red dashed boxes) generating n observation streams, abstrac-

tions (represented by circles) and corresponding target options (represented by pink

dotted boxes) are learned sequentially in order of increasing learning difficulty. The

learning process involves not just acquiring the target options, but also the sequence

in which they are acquired. The top figure shows an example of the desired result

after the first target option was learned. The bottom figure shows the the desired end

result after all possible target options have been learned. The curved arrow indicates

the temporal evolution of the learning process.

Input Exploratory Options: The agent can execute an input set of pre-defined

temporally extended action sequences, called the exploratory option set O e = {Oe
1
, ...,

Oe
n
; n ≥ 1}. Each exploratory option is defined as a tuple 〈I e

i
,β e

i
,πe

i
〉, where

I e
i
⊆ S Φ is the initiation set comprising abstracted states where the option is

available, β e
i

: S Φ → [0, 1] is the option termination condition, which will de-
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termine where the option terminates (e.g., some probability in each state), and

πe
i

: I e
i
×A → [0, 1] is a pre-defined stochastic policy, such as a random walk

within the applicable state space. Each exploratory-option’s policy generates an

observation stream via a sensor-functionU , such as an image sensor like a camera:

xi(t) =U (P (s,πe
i
(sΦ)))

whereP is the unknown transition model of the environment, sΦ ∈ I e
i

is the agent’s

current abstracted state while executing the i th exploratory option Oe
i

at time t, s ∈
S is the corresponding environment state, and πe

i
(sΦ) returns an action. Let X =

{x1, ...,xn} denote the set of n I-dimensional observation streams generated by the

n exploratory-option’s policies. At each time t however, the learning algorithm’s

input sample is from only one of the n observation-streams.

Curiosity Function: As defined earlier in Section 4.2, Ω denotes an unknown

function indicating the speed of learning an abstraction by the abstraction-estimator

Θ for a given input observation stream x ∈ X . Ω induces a total ordering among the

observation streams making them comparable in terms of learning difficulty.

Target Options: Unlike the pre-defined input exploratory-option set, a target-

option set O L is the outcome of the learning process. A target option OL ∈ O L
contains a learned abstractionφi and a learned deterministic policy πL

i
. It is defined

as a tuple 〈I L
i

,βL
i

,φi,π
L
i
〉. I L

i
⊆ (S Φ ×S Φ

φi
) is the target-option’s initiation set

defined over the augmented state space (S Φ ×S Φ
φi
), where S Φ

φi
denotes the space

spanned by the abstraction φi’s output y(t) = φ
�

xj(t)
�

, xj ∈ X . βi is the option’s

termination condition, and πL
i

: (S Φ × S Φ
φi
) → A is the learned deterministic

policy.

Encoded Observation Streams: Let X O
L (t) denote an ordered set (induced by

time t) of pre-images of the learned abstractions outputs, X O
L (t) = {φ←

i
yi,∀OL

i

∈ O L (t)}. X O
L (t) represents the set of encoded observation streams at time t.

Other Notation: |.| indicates cardinality of a set, ‖.‖ indicates Euclidean norm,

〈.〉t indicates averaging over time, 〈.〉τ
t

indicates windowed-average with a fixed

window size τ over time. δ is a small scalar constant (≈ 0). Var[·] represents

statistical variance and ∀ indicates for all.

Problem Statement:

With the above notation, the curiosity-driven skill acquisition problem can be for-

malized as an optimization problem with the following objective. Given a fixed set

of input exploratory options O e, find a target-option set O L , such that the number

of target options learned at any time t is maximized:



93 5.2 Learning Problem Formalized

max
OL

��O L (t)
�� , ∀t = 1, 2, ...

under the constraints,

〈y j

i 〉t = 0, 〈(y j

i )
2〉t = 1, ∀ j ∈ {1, ..., J},∀OL

i
∈ O L (t), (5.1)

�
∀OL

i
∈ O L (t),∃ j ∈ {1, ..., n},
and ∀OL

k 6=i
∈ O L (t)

�
:
〈‖Θ(xj,φi)−φi‖〉τt ≤ δ
〈‖Θ(xj,φk)−φk‖〉τt > δ

, (5.2)

Ω(xi)≤ Ω(x j), ∀i < j and xi,x j ∈ X O
L (t), and (5.3)

πL
i
= arg max

πi

Var
�
φi

�
U (P (s,πi(s

Φ)))
��

, sΦ ∈ I L ,∀OL
i
∈ O L (t). (5.4)

Constraint (5.1) requires that the abstraction-output components have zero mean

and unit variance. This constraint enables the abstractions to be non-zero and avoids

learning features for constant observation streams. Constraint (5.2) requires a unique

abstraction be learned that encodes at least one of the input observation streams,

avoiding redundancy. Constraint (5.3) imposes a total-ordering induced by Ω on the

abstractions learned. Observation streams that are easier to learn are encoded first.

And finally, Constraint (5.4) requires that each target-option’s policy maximizes

sensitivity, determined by the variance of the observed abstraction outputs [Saltelli

et al., 2000]. In the rest of the text, I interchangeably use the word skill to denote a

learned target option OL
i

and a skillset to denote the target-option set O L .

Optimal Solution: For the objective to be minimized, at any time t, the optimal

solution is to learn a target option corresponding to the current easiest but not yet

learned abstraction among the observation streams (to satisfy Constraints (5.1-5.3))

and a policy that maximizes the variance in the encoded abstraction output (to satisfy

Constraint (5.4)).

However, since Ω (see Constraint 5.3) is not known a priori, it needs to be esti-

mated online by actively exploring the input exploratory options over time. One

possible approach is to find (a) an analytical expression of Ω for the particular

abstraction-estimator Θ and (b) an observation stream selection technique that can

estimate the Ω values for each observation stream. This approach would be depen-

dent on the abstraction-estimator used. However, like Curious Dr. MISFA, CCSA

framework employs an approach independent of the abstraction-estimator used. CCSA

makes use of reinforcement learning to estimate the Ω values, in the form of curios-

ity rewards generated through the learning progress made by Θ.
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5.2.2 Continual Curiosity-Driven Skill Acquisition

In the above formulation, the agent has a fixed set of n(≥ 1) input exploratory op-

tions. Therefore, the number of learnable target options is equal to the total number

of learnable abstractions, which is at most equal to the number of input exploratory

options:

lim
t→∞

��O L (t)
��≤ n. (5.5)

To enable continual learning [Ring, 1994], the number of skills acquired by the

agent should not necessarily be bounded and the agent needs to reuse the previously

acquired skills to learn more complex skills. Therefore, continual curiosity-driven

skill acquisition learning problem is a slightly modified version of the above formu-

lation, such that the target options learned form a basis for new input exploratory

options:

O e←O e ∪F (OL ), (5.6)

where F (.) denotes some functional variation of a deterministic target option to

make it stochastic (exploratory). Therefore, the number of input exploratory options

(n) increases whenever a new skill is acquired by the agent.

Sub-Target Options: Constraint (5.4) requires that each target-option’s policy max-

imizes variance of the observed J-dimensional abstraction outputs. In principle, the

constraint can be re-written such that only a subset of J dimensions of the abstrac-

tion can be used to learn a policy. This results in a maximum number of 2J − 1

learnable policies. The set of target options that all share the same abstraction

{〈I L
i

,βL
i

,φi,π
L
i j
〉; j ≤ (2J − 1)} are denoted as sub-target options. To keep it

simple, in the rest of the paper I use J dimensions as presented in Constraint (5.4)

to learn the target-option’s policy and therefore limiting 1 target option for each

learned abstraction.

5.3 Method Description

Section 5.1 presented an overview of the CCSA framework. Here, I will present

each part of the framework in detail and also show how it addresses the learning

problem formalized in Section 5.2.

5.3.1 Input Exploratory Options

As discussed in Section 5.2, I defined a set of input exploratory options that the

agent can execute to interact with the environment. Here, I will present details on



95 5.3 Method Description

Predictable World Unseen World
Avg.

Estimation 
Error

δ

Avg.
Estimation 

Error

δ

LSPI 
Explorer

Random 
Walk

Novelty-Bonus + CR

LSPI Exp

Rnd Walk

Thresholded Estimation Error

0

Exploration Policy

(a)

(b)

(c)

Emax

S� S�

Figure 5.3. (a) Exploratory-option policy has two phases: If the estimation error of

any already learned abstraction modules for the incoming observations is lower than

threshold δ, the exploratory-option’s policy is learned using Least Squares Policy It-

eration (LSPI). If the estimation error is higher than the threshold then the policy is a

random walk. (b) An example thresholded estimation error and the (c) corresponding

exploration policy.

how to construct these options.

The simplest exploratory option policy is a random walk. However, A more so-

phisticated variant uses a form of initial artificial curiosity, derived from error-based

rewards [Singh et al., 2004]. This exploratory-option’s policy πe is determined by

the predictability of the observations x(t), but can also switch to a random walk

when the environment is too unpredictable.

This policy πe has two phases. If the estimation error of any already learned

abstraction modules for the incoming observations is lower than threshold δ, the

exploratory-option’s policy is learned using Least-Squares Policy Iteration Tech-

nique [LSPI; Lagoudakis and Parr, 2003] with an estimation of the transition model

actively updated over the option’s state space I e
i
⊆ S Φ, and an estimated reward

function that rewards high estimation errors. Such a policy encourages the agent

to explore its “unseen world” (Figure 5.3(a)). But if the estimation error of already

learned abstraction modules is higher than the threshold δ, then the exploratory-

option’s policy is a random-walk over the option’s state space. Figure 5.3 illus-

trates this error seeking exploratory-option’s policy. I denote this policy as LSPI-

Exploration policy. When the agent selects an exploratory option Oe
i

to execute, it

follows the option’s policy, generating an observation stream xi =U (P (s,πe
i
(sΦ))),
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until the termination condition is met. To keep it general and non-specific to the en-

vironment, in all my experiments, each exploratory-option’s termination condition

is such that the option terminates after a fixed τ time-steps since its execution.

Setting a different input exploratory-option set would influence the skills devel-

oped by CCSA. In my experiments at t = 0, the agent starts with only a single

exploratory option as defined above. The LSPI-Exploration policy only speeds up

the agent’s exploration by acting deterministically in the predictable world and ran-

domly in unseen world. Since at t = 0 the world is unexplored, LSPI-Exploration

policy is just a random walk in the agent’s abstracted states. Environment or domain-

specific information can be used to design the input exploratory-option set in order

to shape the resulting skills. For example, exploratory options with random-walk

policies mapped to different sub-regions in the robot’s joint space can be used.

5.3.2 Curiosity-Driven Abstraction Learning: Curious Dr. MISFA

At the core of the CCSA framework is the Curious Dr. MISFA algorithm. The or-

der in which skills are acquired in the CCSA framework is a direct consequence

of the order in which the abstractions are learned by the Curious Dr. MISFA algo-

rithm. The input to the Curious Dr. MISFA algorithm is a set of high-dimensional

observation streams X = {x1, ...,xn : xi(t) ∈ RI , I ∈ N}, generated by the input

exploratory-option’s policies. The result is a slow feature abstraction corresponding

to the easiest yet still unknown observation stream.

5.3.3 Learning a Target Option

Let φi denote the slow feature abstraction learned by the Curious Dr. MISFA algo-

rithm corresponding to the current easiest-yet-unlearned exploratory option stream

(say xj). The abstraction’s output stream yi = φi(xj) has zero-mean and unit-

variance over time (see Chapter 3) and is a lower-dimensional representation of

the input x j (satisfies Constraint (5.1); see Section 5.2). The output values yi(t) are

discretized to a set of abstraction states S φi , which represent the newly discovered

abstracted states of the agent. A deterministic target option is then constructed as

follows:

Initiation Set (I L ): The initiation set is simply the product state space: I L
i
=

(I e
j
×S Φ

φi
). Therefore, the option is now defined over a larger abstracted state space

that includes the newly discovered abstraction states.

Target Option Policy (πL ): The target option policy πL
i

: I L
i
→ A must

be done in such a way as to satisfy Constraint (5.4). To this end, I use Model-

based Least-Squares Policy Iteration Technique [LSPI; Lagoudakis and Parr, 2003]
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over estimated transition and reward models. The target-option’s transition model

P OL
i has been continually estimated from the (sΦ, a, sΦ−) samples generated via the

exploratory-option’s policy πe
j
. To estimate the reward function, the agent uses re-

wards proportional to the difference of subsequent abstraction activations:

rOL
i (t) = ‖yi(t)− yi(t − 1)‖ (5.7)

ROL
i (sΦ, a) = (1−α)ROL

i (sΦ, a) +αrOL
i (t), (5.8)

where yi(t) = φi

�
U (P (s−,πe

j
(sΦ−)))

�
and yi(t − 1) = φi

�
U (P (s,πe

j
(sΦ)))

�
.

Here, s− and s are the corresponding environment states,P is the unknown transition-

model of the environment, and 0 < α < 1 is a constant smoothing factor. Once the

estimated transition and reward models stabilize, LSPI follows the RL objective and

learns a policy πL
i

that maximizes the expected cumulative reward over time:

πL
i
= argmax

π
E



∞∑

t=0

γt rOL
i (t)

���π, ROL
i


 , (5.9)

where γ is a discount factor close to 1. Therefore, πL
i

maximizes the average

activation differences, which is equivalent to maximizing variance of the activa-

tions [Zhang et al., 2012] approximately1 satisfying Constraint (5.4).

Termination Condition (βL ): The option terminates whenever the agent reaches

the abstracted state where it observes the maximum reward max
(s,a)

ROL
i .

Each target option learned is added to the target-option set O L and the learn-

ing process iterates until all the learnable exploratory option streams are encoded.

Since the expected behavior of Curious Dr. MISFA ensures that the Constraints (5.1-

5.3) are satisfied and the learned target-option’s policy satisfies Constraint (5.4), the

target-option set O L , at any time t, therefore satisfies the required constraints.

In Section 5.2, I discussed an alternative to Constraint (5.4), where different

dimensions of the learned abstraction may be used to learn multiple policies, result-

ing in a set of sub-target options. To keep it simple, I used all dimensions of an

abstraction to learn a target-option’s policy. However, a sub-target option set can

be constructed by following the approach discussed above. Multiple reward func-

tions can be simultaneously estimated from the (sΦ, a, sΦ−) samples generated via

exploratory-option’s policy, and the set of sub-target options can be constructed via

least-squares policy iteration in parallel.

1The error between the true and the estimated target-option policy depends on how well the tran-

sition and reward models are estimated based on the samples (sΦ, a, sΦ−) generated by the exploratory-

option’s policy.
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Figure 5.4. Reuse of the learned target options. For each target option learned (rep-

resented by pink dotted box), two new exploratory options (Biased Initialization and

Explore and Policy Chunk and Explore) are added to the input exploratory-option (rep-

resented by red dashed boxes) set. Biased Initialization and Explore option biases the

agent to explore first the state-action tuples where it had previously received maximum

intrinsic rewards, while the Policy Chunk and Explore option executes the deterministic

target-option’s policy before exploration.

5.3.4 Reusing Target Options

To make the skill acquisition open-ended and to acquire more complex skills (see

Section 5.2.2), the learned target option OL can be used to explore the newly dis-

covered abstracted state space. However, a target option may not be reused straight-

away, since by definition, it differs from an exploratory option, wherein the target-

option’s policy is deterministic, while the exploratory-option’s policy is stochastic

(see Section 5.3.1). Two new exploratory options are constructed instead, which are

based on the target option OL
i

that was learned last.

In the first option, called policy chunk and explore, the initiation-set is the

same as that of learned target option I e
n+1
= I L

i
. The policy combines the target-

option’s policy πL
i

, which terminates at the state where the variance of subsequent

encoded observations is highest, with the LSPI-Exploration policy described in Sec-

tion 5.3.1. Every time this policy is initiated, the policy-chunk (A policy chunk is

a non-adaptive frozen policy) πL
i

is executed, followed by the LSPI-Exploration

policy. This can be beneficial if the target option terminates at a bottleneck state,

after which the agent enters a “new world” of experience, within which the LSPI-

Exploration policy is useful to explore.
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Figure 5.5. Block diagram of the agent-environment interactions in CCSA. CCSA

agent interacts with the environment by taking actions a upon following the current

exploratory-option’s policy πe. It makes high-dimensional observations of the environ-

ment states s. If previously not encoded, these observations update the adaptive ab-

straction bφ. The updating bφ generates intrinsic rewards r int, which are used to update

the internal reward model R int. Based on R int, the agent updates its internal policy

πint. Using πint, the agent takes an internal action aint = {stay, switch} and observes

the next internal state sint. The exploratory option corresponding to sint is executed

for the next iteration. The process continues until bφ’s estimation error drops below a

threshold, at which point the abstraction is saved. The agent’s abstracted state space

is augmented with the new feature states S Φ
φ

. The high-dimensional state observa-

tions are now used to update the transition P OL and reward ROL models of the new

abstracted state space. When the models stabilize, a policy πL is learned. With the

learned abstraction φ and the learned policy πL , a target option is constructed and

saved. Based on the saved target option, two new exploratory options Oe are con-

structed and added to the exploratory option set. The entire process iterates with the

new input exploratory option set.
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Algorithm 9: Int-Policy-Update (x)

// Curious Dr. MISFA Internal Policy Update

1 Abstraction-Learned← False // Abstraction learned or not

2 φ ← Gating-System(x) //Get the assigned abstraction

3 ξt+1 = ‖Θ(x,φ)−φ‖ //Estimation Error

4 if 〈ξt+1〉τ > δ then

5 φ̂ ← Θ(x, φ̂) //Update the adaptive-abstraction

6 if 〈‖Θ(x, φ̂)− φ̂‖〉τ < δ then

7 Φt+1 ← Φt ∪ φ̂ // Update abstraction set

8 Abstraction-Learned← True

9 end

10 end

11 Rint
t+1
← UpdateReward (ξ̇t+1) //Update the intr. reward func.

12 πint
t+1
←Model-LSPI (P int, Rint

t+1
) //Update intr. policy

13 πint
t+1
← ε-greedy (πint

t+1
) //Exploration-exploitation tradeoff

14 return (πint
t+1

, Abstraction-Learned)

In the second option, called biased initialization and explore, the exploratory-

option’s policy uses the normalized value function of the target option as an initial

reward function estimate. This initialization biases the agent to explore the state-

action tuples first where it had previously received maximum intrinsic rewards. Oth-

erwise it is the same as the standard initial error-seeking LSPI-Exploration policy.

For each target option learned, these two exploratory options are added to the in-

put exploratory-option set. In this way, the agent continues the process of curiosity-

based skill acquisition by exploring among the new exploratory option set to dis-

cover unknown regularities. A complex skill OL
k
= 〈I L

k
,βL

k
,φk,πL

k
〉 can be learned

as a consequence of chaining multiple skills that were learned earlier.

5.4 Pseudocode

The entire learning process involves determining three policies (see Figure 5.5):

1. πe: Exploratory-option’s stochastic policy that is determined (see Section 5.3.1)

to generate high-dimensional observations.

2. πint: An internal policy that is learned (see Section 5.3.2) to determine for which

exploratory option Oe to encode a slow feature abstraction.
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Algorithm 10: Continual Curiosity-Driven Skill Acquisition (CCSA)

1 Φ0 ← {}, π0 ← Random (), φ̂ ← 0, Abstraction-Learned← False

2 for t← 0 to∞ do

3 sint ← current internal state, aint ← action selected by πint
t

in state sint

4 Take action aint, observe next internal state sint
− (= i)

// Execute the exploratory option Oe
i

5 while not β e
i
(t) do

6 sΦ ← current subjective state, a← action selected by πe
i

in state sΦ

7 Take action a, observe next subjective state sΦ− and the sample x

8 if not Abstraction-Learned then

// Internal Policy Update

9 (πint
t+1

, Abstraction-Learned) = Int-Policy-Update (x)

10 else

// Learn target option

11 πint
t+1
← πint

t
, Rprev ← ROL , Pprev ← POL

12 ROL (sΦ, a) = (1−α)ROL (sΦ, a) +α(‖yi(t)− yi(t − 1)‖)
13 POL (sΦ, a, sΦ−) = (1−α)POL (sΦ, a, sΦ−) +α

14 if (‖ROL − Rprev‖< δ and ‖POL − Pprev‖< δ) then

// Get the target-option policy

15 πL ← LSPI-Model(POL , ROL )

// Construct target option

16 OL = 〈I L ,βL , φ̂,πL 〉
// Add to target-option set

17 O L ← O L ∪OL

// Construct two new exploratory options

18 O e ← O e ∪ Biased-Init-Explore(OL )

19 O e ← O e ∪ Policy-Chunk-Explore(OL )

// Reset

20 φ̂ ← 0, Abstraction-Learned← False

21 end

22 end

23 end

24 end
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3. πL : Target-option’s deterministic policy that is learned (see Section 5.3.3) to

maximize variation in the slow feature abstraction output.

The resultant target options (skills) are stored and reused as discussed above to fa-

cilitate open-ended continual learning. Algorithms 9 and 10 summarize the entire

learning process.2

5.5 Experimental Results

I present here experimental results that focus on continual-learning of skills using

an iCub humanoid platform. The results here are the first in which a humanoid

robot such as an iCub, learns a repertoire of skills from raw-pixel data in an online

manner, driven by its own curiosity, starting with low-level joint kinematic maps.3

Learning a skillset largely depends on the environment that the robot is in. For

the sake of developing specific types of skills such as toppling an object, grasping,

etc., a safe environment is pre-selected for the iCub to explore, yet the iCub is mostly

unaware of the environment properties.

Environment: An iCub robot is placed next to a table, with an object (a plastic cup)

in reach of its right arm and within its field-of-view (Figure 5.6(a)). The cup topples

over upon contact, and the resulting images after toppling are predictable. There

is a human experimenter present, who monitors the robot’s safety and replaces the

cup in its original position after it is toppled. The iCub does not “know” that the

plastic-cup and the experimenter exist. It continually observes the gray-scale pixel

values from the high-dimensional images (75× 100) captured by the left and right

camera eyes (Figure 5.6(b)). In addition to the experimenter and the cup, it also

cannot recognize its own moving hand in the incoming image stream, as shown in

the Figure 5.6(b).

Task-Relevant Roadmap Exploration is not performed at the level of joint angles

due to the complexity of the robot’s joint space. Instead, the robot is given a map

of poses a priori. This compressed actuator joint space representation is called a

Task-Relevant Roadmap [TRM; Stollenga et al., 2013]. This map contains a fam-

ily of iCub postures that adhere to relevant constraints. The TRM is grown offline

by repeatedly optimizing cost functions that represent the constraints using a Nat-

ural Evolution Strategies [NES; Wierstra et al., 2008] algorithm, such that the task

space is covered. This allows us to deal with complex cost functions and the full 41

2A Python-based implementation of related code excerpts can be found at the URL: www.

idsia.ch/~kompella/codes/.
3A video for these experiment can be found at URL: http://www.

youtube.com/watch?v=OTqdXbTEZpE

www.idsia.ch/~kompella/codes/
www.idsia.ch/~kompella/codes/
http://www.youtube.com/watch?v=OTqdXbTEZpE
http://www.youtube.com/watch?v=OTqdXbTEZpE
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Environment

(a)

Sample Input Observation
iCub's Left-Camera Image iCub's Right-Camera Image

(b)

Figure 5.6. (a) An iCub robot is placed next to a table, with an object (a plastic cup)

in reach of its right arm and within its field-of-view. (b) Sample input images captured

from both left and right iCub camera-eyes are an input to the algorithm.

degrees-of-freedom of the iCub’s upper body. The constraints used: (a) the iCub’s

hand is positioned on a 2D plane parallel to the table while keeping its palm ori-

ented horizontally; (b) the left hand is kept within a certain region to keep it out of

the way; and (c) the head is pointed towards the table. The task-space of the TRM

comprises the x and y position of the hand, which forms the initial discretized 10×5

abstracted state space S Φ = S Φ
x
×S Φ

y
. The action space contains 6 actions: North,

East, South, West, Hand-close and Hand-open.

Because the full body is used, the movements look more dynamic, but as a con-

sequence, the head moves around and looks at the table from different directions,

making the task a bit more difficult. Even so, IncSFA still finds the resulting regu-

larities in the raw camera input stream, and the skill learner continues to learn upon

these regularities without any external rewards.

Experiment parameters: I used a fixed parameter setting for the entire experiment.

IncSFA Algorithm: For CCIPCA I use the learning rate 1/t with amnesic pa-

rameter 0.4 while the MCA learning rate is set to 0.01. CCIPCA does variable size

dimension reduction by calculating how many eigenvalues would be needed to keep

99% of the input variance — typically this was between 5−10 — so the 7500 pixels

could effectively be reduced to only about 10 dimensions. The output dimension is

set to 1, so only the first IncSFA feature is used as an abstraction. However, more

number of features can be used if desired.

Robust Online Clustering (ROC) Algorithm: Each clustering implementation has

its maximum number of clusters set to N max = 3 so that it can encode multiple slow

feature values for each abstracted state (see Section 4.3.2). Higher values can be

used, though very high values may lead to spurious clusters. The estimation error

threshold, below which the current module is saved and a new module is created, is

set to a δ = 0.3. The amnesic parameter is set to β amn = 0.01. Higher values will
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make ROC adapt faster to the new data, but at the cost of being less stable.

Curious Dr. MISFA’s Internal Reinforcement Learner: To balance between ex-

ploration and exploitation, ε-greedy strategy is used (see Section 4.3.5). The initial

ε-greedy value is set to 1.0 (1.0 for pure exploration, 0.0 for pure exploitation), with

a 0.995 decay multiplier. The window-averaging time constant is set to τ= 20, that

is, 20 sample images are used to compute the window-averaged progress error ξ

and the corresponding curiosity-reward (see Section 4.3.4).

Target-option’s Reinforcement Learner: Slow features abstractions have unit-

variance and are typically in the range of (−1.5, 1.5). Each abstraction’s output

value is discretized to −1, 1, i.e., into two abstracted states.

Experiment Initialization: The iCub’s abstracted state space (S Φ) at t = 0 is a

10× 5 grid found using TRM. To minimize human input into the system, the input

exploratory-option set (O e) has only one exploratory option to begin with (as defined

in Section 5.3.1): O e = {Oe
1
}, which is a random walk in the iCub’s abstracted

state space. However, one may pre-define multiple input exploratory options, which

could lead to a different result. The exploratory option terminates after τ= 20 time

steps since its execution. The internal state space at t = 0 is S int = {sint
1
}, where sint

1

corresponds to the exploratory option Oe
1
. The plastic cup is roughly placed around

(2, 2) grid-point on the table.

5.5.1 iCub Learns to Topple the Cup

The iCub starts the experiment without any learned modules, so the exploratory-

option’s policy πe
1

is a random walk over the abstracted state space S Φ. It explores

by taking one of the six actions: North, East, South, West, Hand-close and Hand-

open and grabs high-dimensional images from its camera eyes. The exploration

causes the outstretched hand to eventually displace or topple the plastic-cup placed

on the table. It continues to explore and after an arbitrary amount of time-steps the

experimenter replaces the cup to its original position. After every τ time steps the

currently executing option terminates. Since there is only one exploratory option,

the iCub re-executes the same option. Figure 5.7(a) shows a sample input image

stream of only the left camera.4

Figure 5.7(b) shows the developing IncSFA output over the algorithm execution

time, since the IncSFA abstraction was created. The outcome of IncSFA abstraction

learning is a step-like function, which when discretized, indicates the pose of the cup

(toppled vs non-toppled). Figure 5.7(c) shows the ROC estimation error (blue solid

4We, however, used both the left and right camera images as an input observation by concatenat-

ing them.
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Sample Input Observation Stream 
(left camera)

(a)

x1

− 4

− 2

2

4

0 1000 3000 5000 7000

IncSFA Output over Time

y

Module time→ 

− 2

2

0

50004747

5

6

7

y

0.0

0.5

1.0

1.5

2.0

2.5
Est . Error
Est . Error (EMA)

(b)

1000 3000 5000 7000
(c)

ROC Estimation Error

Er
ro

r

0

Module time→ 
Figure 5.7. (a) A sample image stream of the iCub’s left-eye camera showing the

topple event. (b) Developing IncSFA abstraction output over algorithm execution time,

since it was created. The result is a step-like function encoding the topple event. (c)

ROC estimation error over algorithm execution time. The estimation error eventually

drops below the threshold (δ = 0.3), after which the abstraction is saved.

line) and an Expected Moving Average (EMA) of the error (green dashed line) over

the algorithm execution time. As the process continues, the error eventually drops

below the threshold δ = 0.3 and the abstraction module φ1 is saved. Figure 5.8(a)
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Figure 5.8. (a) The resultant ROC cluster centers, which map the abstraction out-

puts to the abstracted state space (in this case the X and Y grid locations of the

iCub’s hand). Red and yellow colors indicate the discretized feature states S Φ
φ1

. Blue

lines connecting the cluster centers illustrate the learned transition model of the new

abstracted state space. (b) Part of the learned target-option’s policy before the cup

is toppled. The arrows indicate the optimal action to be taken at each grid-location

(sΦ
x
, sΦ

y
) of the iCub’s hand. They direct the iCub’s hand to the grid point (1, 3), which

will make the iCub topple the cup placed at (2, 2). (c) Part of the learned target-

option’s policy after the cup is toppled. They direct the iCub’s hand to move to the

right. This is a result of the experimenter replacing the cup only when the iCub has

moved its hand away from the (2, 2) grid location.

shows the ROC cluster centers that map the feature outputs (y) to each of the 10×5

abstracted states. There are two well separated clusters each representing the state

of the plastic-cup.

Immediately after the abstraction is saved, the cluster centers are discretized

(Red and yellow colors indicate the discretized feature states S Φ
φ1

in Figure 5.8(a)),

the transition model (represented by the blue lines in Figure 5.8(a)) and reward

model of OL
1

are learned followed by a corresponding target-option’s policy πL
1
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as discussed in Section 5.3.3. Figure 5.8(b) shows a part of the learned policy πL
1

before the cup is toppled. The arrows indicate the optimal action to be taken at each

grid-location of the iCub’s hand. They direct the iCub’s hand to the grid point (1, 3),

which will make the iCub topple the cup placed at (2, 2). Figure 5.8(c) shows the

part of the policy after the cup has been toppled. The policy directs the iCub’s hand

to move towards east. This is because, during the experiment the experimenter hap-

pened to replace the cup only when the iCub’s hand is around far east. I label the

learned target option OL
1

, for the given environment, as a “Topple” skill.

5.5.2 iCub Learns to Grasp the Cup

The iCub continues its learning process by reusing the learned topple skill to con-

struct two additional exploratory options as discussed in Section 5.3.4. One in which

the topple policy (Figure 5.8(b)) is executed prior to the LSPI-Exploration policy and

the other, where the normalized value function (Figure 5.9(b)) is used to initialize the

reward function of the LSPI-Explorer. Let Oe
2

and Oe
3

denote these two exploratory

options respectively. Therefore, including the original exploratory option Oe
1
, a total

of 3 exploratory options are an input to CCSA.

The system initially explores by executing each of the options until termination,

i.e., after τ time steps. When it selects either Oe
1

or Oe
2
, the cup gets toppled in the

process (Figure 5.9(a)-Top) and since there already exists a learned abstraction φ1

that encodes the toppling outcome, it receives no internal reward for executing these

options because of the gating system (see Section 4.3.6). This is also the case in the

beginning while executing Oe
2

because the LSPI-Exploration policy initially causes

the iCub to topple the cup yielding no rewards. The initialized values correspond-

ing to the visited state-action tuples soon vanish and the iCub then explores the

neighboring state action pairs. Eventually, as a result of the biased exploration, in a

few algorithm iterations the iCub ends up grasping the cup (Figure 5.9(a)-Bottom).

This gives rise to a high estimation error because of the novelty of the event (Fig-

ure 5.9(c)). Figures 5.9(d)-(i) show the state-action LSPI-Exploration reward func-

tion after a few time steps. The hand-close action at (2, 2) generates the most novel

event. This results in a LSPI-Exploration policy that increases the number of suc-

cessful grasp trials (77 out of 91 total attempts, with most of the unsuccessful trials

in the beginning) when the exploratory option Oe
3

is executed.

Upon executing option Oe
3
, the adaptive abstraction φ̂ begins to make progress by

encoding samples corresponding to the observation stream x3. After a few algorithm

iterations, the agent finds that the action stay at the internal state sint
3

corresponding

to the Oe
3

is rewarding due to the progress made by IncSFA and the ROC estimator

(Figure 5.10(a)). Figure 5.10(b) shows the normalised internal reward function of
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Figure 5.9. (a) Sample iCub’s left-eye camera images corresponding to the three

input exploratory options. x1 and x2 correspond to the original and the policy chunk

& explore exploratory option respectively, while x3 corresponds to the biased init. &

explore exploratory option. (b) Normalized value function of the previously learned

target option (topple). It is used for reward-initialization in the biased init. & explore

exploratory option. (c) Estimation error of the learned topple abstraction module (φ1)

for each of the three observation-streams. (d)-(i) LSPI-Exploration reward function

estimated using the novelty (& curiosity) signal. The Hand-Close action at (2, 2) has

the maximum reward value due to the novel grasp event.
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Figure 5.10. (a) ROC estimation error of the current adaptive-module that is encoding

the new regularities. (b) Normalized internal reward function of Curious Dr. MISFA.

The action stay in the state corresponding to the exploratory option 3 (shown as sint

3
-

St) is most rewarding due to the learning progress made by the IncSFA-ROC module

for the grasp-event. (c) IncSFA output over execution time, since it was created. (d)

Resultant ROC cluster centers mapping the IncSFA output w.r.t. the abstracted state

space. Note that the abstracted states corresponding to the learned topple abstraction

S Φ
φ1

are not shown here, since the grasp abstraction outputs are uncorrelated to the

topple abstraction and it is difficult to illustrate a 4-D plot. Red and yellow colors

indicate the discretized states S Φ
φ2

and the blue lines illustrate the learned transition

model.

Curious Dr. MISFA over algorithm iterations, since the new adaptive module was

created. The internal policy πint quickly converges to select and execute the option

Oe
3

to receive more observations. When the estimation error drops below the thresh-
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Figure 5.11. (a)-(f) Estimated reward function of the new abstracted state space that

is used to learn the target-option’s policy. The hand-close action at (2, 2) receives

the maximum reward as it produces a maximum variation in the slow feature output

(from ≈ −1.5 to 1.5). (g) Learned target-option’s policy representing the grasp skill.

The arrows indicate the optimal actions to be taken at each grid-location (sΦ
x
, sΦ

y
). The

circular arrow represents the hand-close action. The policy directs the iCub’s hand to

move to (2, 2) and then to close its hand, which should result in a successful grasp.

old (δ = 0.3), it saves the module φ2 = φ̂. Figure 5.10(c) shows the IncSFA output

over the time since the new module was created. Figure 5.10(d) shows the learned

cluster centers mapping the slow feature output to the abstracted state space. Note

that the abstracted states corresponding to the learned topple abstraction S Φ
φ1

and

not are shown in Figure 5.10(d), because the grasp abstraction outputs are uncorre-

lated to the topple abstraction and it is difficult to illustrate a 4-D plot. The iCub

then begins to learn the target policy πL
2

by learning the target-option’s transition

and reward model. Figure 5.11(a)-(f) show the target-option’s state-action reward

model developed after 8000 observation samples (module time=8000). And finally,

Figure 5.11(g) shows the corresponding skill learned, i.e., to perform a Hand-Close

at (2, 2) (the anti clockwise circular arrow represents the Hand Close action).

This experiment demonstrated how the iCub reused the knowledge gained by the

topple skill to learn a subsequent skill labeled as “Grasp”. The grasp skill includes

an abstraction to represent whether the cup has been successfully grasped-or-not and

a policy that directs the iCub’s hand to move to (2, 2) and then to close its hand.
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5.5.3 iCub Learns to Pick and Place the Cup at the Desired Loca-

tion

Here, an experiment is conducted to demonstrate the utility of intrinsic motivation

in solving a subsequent external objective. The iCub is in a similar environment

as discussed above. However, it is given an external reward if it picks the plastic

cup and places (drops) it at a desired location (at any of the following grid locations

(sΦ
x
, sΦ

y
): (6, 2), (6, 3), (6, 1), (5, 2), (7, 2)). The agent with no intrinsic motivation

finds the reward almost inaccessible via random exploration over its abstracted state

space S Φ, because the probability of a successful trial is low.5 (≈ 10−5) However,

a curiosity-driven iCub greatly improves this by learning to pick/grasp the cup by

itself and then reusing the skill to access the reward.

Starting from the 10× 5 abstracted state space found via TRM, the iCub learns

to topple and then grasp as discussed in the previous sections. The process continues

and it adds two more exploratory options (Oe
4
, Oe

5
) corresponding to the grasp skill as

discussed in Section 5.3.4. The biased initialization and explore option Oe
4

results in

the iCub dropping the cup close to where it has picked it up. Since it doesn’t get any

reward in this case, the initialized values to the visited state-actions tuples vanish

and it explores the neighboring state-action tuples. This option will take a long time

before it can execute the desired state-action tuple to drop the cup. The policy chunk

and explore option Oe
5
, however, first executes the grasp policy and then randomly

explores until it receives some novelty or curiosity reward. When it drops the cup in

one of the desired states while exploring, it gets an external reward. This results in a

LSPI-Exploration policy that executes the rewarding behavior. Curious Dr. MISFA

eventually finds the internal action stay at the internal-state sint
5

corresponding to the

option Oe
5

most rewarding. As soon as the experimenter replaces the cup, the iCub

repeats the pick and place behavior until the external reward is removed.

This experiment demonstrated how CCSA enabled the iCub to reuse the previ-

ously learned grasp skill to learn to pick and place the cup at a desired location. Note

that in the experiments, a human experimenter unknown to the robot acted as a part

of the environment to speed up the learning process. Without the experimenter the

robot might not have acquired the same set of skills, it might have learned to push

the object instead [Kompella et al., 2012b].

5The probability of a successful pick = 1/300, probability of a drop given a successful pick =

1/300 * 1/60.
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Figure 5.12. (a) CCSA now has 5 exploratory options as an input. Among the 5

options, only the policy chunk & explore corresponding to the grasp skill makes it

easier for the iCub to access the external-reward present for placing the cup at the

desired grid locations. This results in a policy – to place the cup in the desired location

(the clockwise circular arrow represents the Hand-Open action). (b) Bird’s eye view

of the iCub demonstrating the pick & place skill. (b) Figure shows the increasing

dimensions in the agent’s abstracted state space with every new abstraction learned.

This experiment demonstrates how CCSA enables the iCub to reuse the grasp skill,

which was previously learned via intrinsic motivation, on learning to pick & place the

cup to a desired location.
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5.6 Conclusion

I proposed an online learning algorithm that enables a humanoid robotic agent such

as an iCub to incrementally acquire skills in order of increasing learning difficulty,

from its onboard high-dimensional camera inputs and low-level kinematic joint

maps, driven purely by its intrinsic motivation. The method combines the active

modular Curious Dr. MISFA algorithm and the options framework. I formally de-

fined the underlying learning problem and provided experimental results conducted

using an iCub humanoid robot to topple, grasp and pick-place a cup. To my knowl-

edge, this is the first method that demonstrates continual curiosity-driven skill ac-

quisition from high-dimensional video inputs in humanoid robots.
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Chapter 6

Discussion and Conclusion

This chapter discusses the results from developing the CCSA framework in the con-

text of related research carried out by other researchers prior to this thesis. The cur-

rent limitations of the CCSA framework are presented and insights for future work

are provided along with a final summary of the contributions made in the thesis.

6.1 Related Work on Intrinsically Motivated Autonomous

Skill Acquisition

Existing intrinsically-motivated skill acquisition techniques in RL have often been

been applied to simple domains. For example, Bakker and Schmidhuber [2004] pro-

posed a hierarchical RL framework called HASSLE in a grid world environment,

where high-level policies discover subgoals from clustering distance-sensor outputs

and low-level policies specialize on reaching the subgoals. Stout and Barto [2010]

explore the use of a competence-based IM as a developmental model for skill acqui-

sition in simple artificial grid-world domains. Pape et al. [2012] proposed a method

for autonomous acquisition of tactile skills on a biomimetic robot finger, through

curiosity-driven reinforcement learning.

There have been attempts to find skills using feature-abstractions in domains

such as those of humanoid robotics. Hart [2009] proposed an intrinsically motivated

hierarchical skill acquisition approach for a humanoid robot. The system combines

a discrete event dynamical system [Huber and Grupen, 1996] as a control basis and

an intrinsic reward function [Hart et al., 2008] to learn a set of controllers. However,

the intrinsic reward function used is task specific and the system requires a teacher

to design a developmental schedule for the robot.

Konidaris et al. [2009; 2010] show how each option might be assigned with an
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abstraction from a library of many sensorimotor abstractions to acquire skills. The

abstractions have typically been hand-designed and learning was assisted by human-

demonstration. In their recent work [Konidaris et al., 2011], an intrinsic motivation

system makes a robot acquire skills from one task to improve the performance on

a second task. However, the robot used augmented reality tags to identify target

objects and had access to a pre-existing abstraction library. CCSA autonomously

learns a library of abstractions and control policies simultaneously from raw-pixel

streams generated via exploration, without any prior-knowledge of the environment.

Mugan and Kuipers [2012] Qualitative Learner of Action and Perception sys-

tem discretizes low-level sensorimotor experience through defining landmarks in

the variables and observing contingencies between landmarks. It builds predictive

models on this low-level experience, which it later uses to generate plans of ac-

tion. It either selects its actions randomly (early) or such that it expects to make

fast progress in the performance of the predictive models (artificial curiosity). The

sensory channels are preprocessed so that the input variables, for example, track the

positions of the objects in the scene. A major difference between this system and

CCSA is that CCSA operates upon the raw pixels directly, instead of assuming the

existence of a low-level sensory model that can track the positions of the objects in

the scene.

Baranes and Oudeyer [2013] proposed an intrinsic motivation architecture called

SAGG-RIAC, for adaptive goal-exploration. The system comprises two learning

parts, one for self-generation of subgoals within the task-space and the other for ex-

ploration of low-level actions to reach the subgoals selected. The subgoals are gen-

erated using heuristics methods based on a local measure of competence progress.

The authors show results using a simulated quadruped robot on reaching tasks. The

system assumes, however, that a low-dimensional task space is provided. CCSA on

the other hand is a task-independent approach, where subgoals are generated auto-

matically by the slow-feature abstractions that encode spatio-temporal regularities

in the raw high-dimensional video inputs.

Ngo et al. [2012; 2013] investigated an autonomous learning system that utilizes

a progress-based curiosity drive to ground a given abstract action, e.g., placing an

object. The general framework is formulated as a selective sampling problem in

which an agent samples any action in its current situation as soon as it sees that

the effects of this action are statistically unknown. If no available actions have

a statistically unknown outcome, the agent generates a plan of actions to reach a

new setting where it expects to find such an action. Experiments were conducted

using a Katana robot arm with a fixed overhead camera, on a block-manipulation

task. The authors show that the proposed method generates sample-efficient curious

exploratory behavior and continual skill acquisition. However, unlike CCSA, the
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sensorimotor abstractions are hand-designed and not learned by the agent.

Schmidhuber [2013] formulated an algorithm called PowerPlay, which can be

viewed as a greedy variant of the Formal Theory of Creativity. In PowerPlay, an

increasingly general problem solver is improved by searching for the easiest to solve,

still not yet known task, while ensuring all previously solved tasks remain solved.

PowerPlay, unlike most online-learning algorithms has no problems with forgetting.

However, using PowerPlay for high-dimensional video data is a hard non-trivial

problem. Similar to PowerPlay, in CCSA when a new representation is learned

well enough to be internally predictable (low feature output estimator error), it is

frozen and added to a long-term memory storage, and therefore already learned

representations are not lost. Additionally, CCSA can learn representations from

high-dimensional raw video data.

CCSA uses IncSFA to find low-dimensional manifolds within the raw pixel in-

puts, providing a basis for coupled perceptual and skill learning. I emphasize the

special utility of SFA for this task over similar methods such as principal com-

ponent analysis [Jolliffe, 2005] or predictive-projections [Sprague, 2009], which

are based on variance or nearest neighbor learning, whereas slow features through

IncSFA extract temporal invariance from input streams that represent “doorway”

or “bottleneck” aspects (choke-points between two more fully connected subar-

eas), similar to Laplacian-Eigen Maps [Sprekeler, 2011; Mahadevan and Maggioni,

2007; Luciw and Schmidhuber, 2012]. The hierarchical reinforcement learning lit-

erature [Schmidhuber, 1991a; Schmidhuber and Wahnsiedler, 1992; Wiering and

Schmidhuber, 1998; Sutton et al., 1999; Menache et al., 2002; Bakker and Schmid-

huber, 2004; Mahadevan and Maggioni, 2007; Şimşek and Barto, 2008] illustrates

that such bottlenecks can be useful subgoals. Finding such bottlenecks in visual

input spaces is a relatively new concept, and one I exploit in the iCub experiments.

At the core of CCSA is the Curious Dr. MISFA algorithm, which learns multiple

slow feature abstractions by exploring image streams. Another image-based ab-

straction learning algorithm worth noting is the Object Semantic Hierarchy (OSH)

developed by Xu and Kuipers [2010; 2011]. Motivated by the work of the spatial

semantic hierarchy [Kuipers, 2000; Kuipers et al., 2004], OSH builds a collection

of multi-level object representations from camera images. It uses “model-learning

through tracking” [Modayil and Kuipers, 2004, 2008] strategy to model the static

background and the individual foreground objects. Such a semantic knowledge can

be useful for an agent to learn effective skills [Stober and Kuipers, 2008]. How-

ever, OSH assumes that the image background is static, which is not the case with a

moving humanoid robot that causes the intensities of all the image pixels to change.

Curious Dr. MISFA does not make such assumptions about the structure in the sen-

sory stream. It captures features that encode the slowest variations in the video,
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which could correspond to a single or multiple objects, either as a part of the back-

ground or foreground. An intuitive example to demonstrate this is a scenario with

an object moving in front of a noisy background. Slow features encode the object’s

pose rejecting the fast-varying background noise.

6.2 Limitations and Future Work

While much of the research in humanoid robot learning has been based upon human

demonstrations, human-given task-descriptions, or pre-processed inputs, CCSA makes

an important step towards combining several aspects needed to develop an online,

continual curiosity-driven humanoid robotic agent. In the following, I will briefly

list these aspects along with the current limitations of the CCSA framework and

insights for future work:

• Raw High-Dimensional Information Processing. CCSA uses an IncSFA al-

gorithm, updated online directly from raw-pixels, to encode slow-feature ab-

stractions that lead to skills. Slow features learned through IncSFA are linear

and not positional invariant, that is, once trained the features may not gen-

eralize to a spatial shift in the object’s position in the image. To learn more

complex skills however, CCSA might benefit from extracting non-linearities

and translational invariance in the video inputs. Hierarchical extensions of

IncSFA (H-IncSFA) over an expanded input in quadratic space [Luciw et al.,

2012; Wiskott and Sejnowski, 2002] or the recently proposed Deeply-Learned

SFA [DL-SFA; Sun et al., 2014] may remedy this. DL-SFA adopts the notion

of 3D convolution and max-pooling to capture abstract, structural and trans-

lational invariant features. As future work, I plan to combine such non-linear

hierarchical structures to improve the quality of the slow-feature abstractions

learned.

• Invariant Skills. The skill labeled “grasp” in the experiments actually repre-

sents “grasp the cylindrical cup from the particular location in the given en-

vironment, invariant to the experimenter’s actions and the iCub’s head/body

movements”. The invariance picked up by the skills acquired in the system

largely depend on the invariance learned by IncSFA from the observations

sensed by the exploring iCub. In the experiments however, if the human ex-

perimenter had replaced the cup at different locations whenever the cup was

toppled or dropped, IncSFA would probably have learned an abstraction that

encodes whether the cup has been grasped-or-not invariant to the cup’s posi-
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Figure 6.1. (a) The higher-order complex skills acquired using CCSA, are in the form

of a chain-like hierarchy. There exists only a single chain-link (shown as a unique

color) connecting higher-order to lower-order skills. This is because, a target option in

CCSA is learned using observations only from one of the exploratory options. (b) An

illustration of a node in a chain hierarchy. Each node has only a single input but can

act as an input to many nodes. (c) Whereas, a node in a compositional hierarchy can

have multiple inputs.

tion (because the events are uncorrelated). This would result in a “grasp skill”

that is invariant to the cup’s position.

• Continual Learning. CCSA uses previously acquired knowledge in the form

of biased explorations or policy-chunks, to learn more complex skills. This

facilitates continual learning of skills. A previously acquired skill may be

refined or adapted to suit to changing environments. For example, in the ex-

periments, if the cup’s position has changed after acquiring the grasp skill,

the biased init. and explore exploratory-option corresponding to the grasp

skill can speed up learning a new skill to grasp the cup from the new posi-

tion. However, the old skills are still retained and reused if the cup’s position

is changed back to its original position. The complex skills acquired using

CCSA are in the form of a chain-like hierarchy (Figure 6.1(a)), i.e., there

exists only a single chain-link connecting higher-order to lower-order skills.

This is because a target option in CCSA is learned using observations only

from one of the exploratory options (see Section 5.2). Each node in the chain-

like hierarchy has only a single input but can act as an input to many nodes

(Figure 6.1(b)). In contrast, a node in a general compositional hierarchy (Fig-

ure 6.1(c)) can have multiple inputs. One way to achieve compositional hier-

archy in CCSA is to add the learned target options to the primitive action set
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A = {North, East, South, West, Hand-close and Hand-open}.

• Environmental Openness. CCSA could benefit from a larger set of pre-

defined input exploratory options. However, to minimize human inputs into

the system, in the experiments the iCub starts with only a single exploratory

option (random walk) and autonomously adds more exploratory options de-

rived from the learned target options. Since CCSA acts directly on raw-pixels,

no prior calibration of the robot cameras are required. Algorithm parameters

are intuitive to tune [Kompella* et al., 2013; Kompella et al., 2012b,a; Luciw

and Schmidhuber, 2012]. Therefore, CCSA can be used in different environ-

ments (and different humanoid robots) without making any design changes to

the learning algorithm. On the motor end, I used a kinematic map that trans-

forms the 41 degrees-of-freedom of the iCub joint configurations to 2D posi-

tions of its hand parallel to the table. For more complex manipulations, which

are required for handling complicated objects, higher dimensional kinematic-

maps could be used [Stollenga et al., 2013]. As a future work, I plan to use

different approaches to tackle easier and safer manipulation with the iCub.

• Quality of Skills Acquired. I formally presented the underlying learning

problem as a constrained optimization problem. The objective function can

be used as a metric to tune different parameters of the method. However, the

metric does not sufficiently evaluate the quality of skills acquired. One major

factor is the type of the abstraction-estimator used. For example, a method

that uses a simpler abstraction learning algorithm may acquire a large number

of skills, which could be functionally equivalent to acquiring a single skill of

a more discriminative abstraction estimator. Therefore, evaluating different

task-unrelated intrinsically-motivated (IM) approaches without providing an

external goal is an ill-posed problem. As a future work, I plan to build realis-

tic, task-independent, skill-acquisition benchmarks with hidden external tasks

to evaluate multiple IM approaches.

• Scalability. For each target option acquired by CCSA, the number of input

exploratory options increases by a value of two (See Section 5.3.4). Observa-

tions from previously encoded exploratory options are automatically filtered

out due to the gating system of Curious Dr. MISFA. Therefore, for each tar-

get option acquired, the number of unknown exploratory options increases by

only one. Hence, the space of input exploratory options scales linearly with

respect to the number of skills acquired.

• Sensor Fusion. And finally, CCSA uses only visual inputs from the onboard
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cameras and joint angles of the iCub. A humanoid-robot’s actions can be im-

proved however, by using different sensory modalities such as tactile and au-

dio in addition to the visual inputs. This should be straightforward addition to

CCSA, since IncSFA is agnostic to the modality of sensory information. The

raw inputs of different modalities can be concatenated as a single input and fed

to the IncSFA algorithm, without causing too much computational overhead

(since IncSFA has a linear update complexity [Kompella et al., 2012a]). Re-

lated work on combining sensory modalities using SFA methods have shown

to achieve good results [Höfer et al., 2012].

The above insights should help to improve CCSA in the future.

6.3 Conclusions

In this thesis, I have presented the following three original contributions addressing

some of the open problems in artificial intelligence research:

• In Chapter 3, I proposed Incremental Slow Feature Analysis (IncSFA) as a

low-complex, online alternative to the batch SFA (BSFA). I showed through

experimental results how IncSFA extracts slow features without storing any

input data or estimating costly covariance matrices. This makes IncSFA suit-

able to use for several online learning applications.

• In Chapter 4, I proposed an online active modular IncSFA algorithm called

the Curiosity-Driven Modular Incremental Slow Feature Analysis (Curious

Dr. MISFA). Curious Dr. MISFA uses the theory of artificial curiosity to ad-

dress the forgetting problem faced by IncSFA, by retaining what was previ-

ously learned in the form of expert slow feature abstractions. I mathematically

proved that under certain technical conditions, Curious Dr. MISFA learns ab-

stractions in the order of increasing learning difficulty. These theoretical op-

timality guarantees were lacking in previous practical implementations of the

curiosity theory [Schmidhuber, 2010b]. Curious Dr. MISFA addresses the

open problem of curiosity-driven abstraction learning.

• In Chapter 5, I proposed a framework for Continual Curiosity-Driven Skill

Acquisition (CCSA) for acquiring, storing and reusing both abstractions and

skills in an online and continual manner. I showed through experiments how

CCSA guides an iCub humanoid robot to acquire a repertoire of skills (topple,

grasp) from raw-pixel vision driven purely by its intrinsic motivation.
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These contributions together demonstrate that the online implementations of

slowness learning make it suitable for an open-ended curiosity-driven RL agent to

acquire a repertoire of skills that map the many raw-pixels of high-dimensional im-

ages to multiple sets of action sequences. In the future, systems like CCSA will be

used to develop flexible and autonomous learning machines, with substantial bene-

fits for society as a whole.



Appendix A

Proofs

This section presents the proofs of all the theorems discussed in this chapter. For

the sake of readability, I will redefine some of the notation that has been previously

defined in Section 4.2. Let X = {x : x(t) ∈ RI , I ∈ N} denote a set of of I-

dimensional observation streams. Let X ⊂X be a finite subset with n ∈ N elements

that may or may not be unique. Let Θ denote an abstraction-estimator that updates a

real-valued abstraction and ensures an almost sure convergence for an I-dimensional

stationary input signal. Let Φ∗ denote the space of all learnable abstractions byΘ for

the input X satisfying Constraints (4.3)-(4.4) (see Section 4.2). Let bφ ∈ RI×J , J ∈
N, bφ /∈ Φ∗ denote the adaptive abstraction. The proof of Theorem 1 is as follows.

Proof for Theorem 1

Theorem 1. There exists a curiosity-function Ω : X → [0, 1) corresponding to Θ

that induces a total ordering on X .

Proof. Since Θ ensures an almost sure convergence on a stationary input signal

x ∈ X , there exists a time Tx ∈ R+ s.t. for

t > Tx, | bφt −φ∗|< δ, (A.1)

where φ∗ represents a fixed-point (∈ RI×J ) and δ is a small non-negative scalar

constant. Tx is called the convergence-time for the signal x. For non-stationary

signals in X , it can be assumed that the above condition holds at infinity. Let T

denote the set of convergence-times of all the signals x ∈ X . Therefore, there

exists a function T : X → T , s.t. T (x) denotes the convergence-time of the input

x. It is straightforward to show that since T is a totally-ordered set, T induces

a total ordering in X . One can easily find an order-preserving transfer function
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f : T → [0, 1), for example 1− e−T , such that the composite function Ω = f ◦ T

induces a total ordering in X .

The next section presents a full derivation of the curiosity function for the IncSFA

algorithm.

Derivation of Definition 1

I will derive here the curiosity function of the IncSFA algorithm for a stationary

observation stream x(t) ∈ RI , I ∈ N. To keep it simple, it is assumed that the learn-

ing progress made by the CCIPCA algorithm is the same for different observation

streams. This assumption approximately holds for signals that have similar ratios

between the eigenvalues of the top principal components [Weng et al., 2003], which

is the case in our experiments. Therefore, the learning progress of the IncSFA for

different observation streams is proportional to the learning progress of the CIMCA

algorithm.

Input to the CIMCA algorithm is the derivative of the normalized (whitened)

observation stream z(t) ∈ RK (see Section 3). The update rule of CIMCA for the

first minor component ( bφ1) is given by

bφ1(t) =
�
1−ηmca

� bφ1(t − 1)−ηmca (ż(t) · bφ1(t − 1)) ż(t) (A.2)

bφ1(t) =
bφ1(t)/‖ bφ1(t)‖. (A.3)

To analyze the "average" dynamics, Eq. (A.2) is reformulated by taking the condi-

tional expected value E[ bφ1(t + 1)| bφ1(0), ż(i), i < t] at each iteration

bφ1(t) =
�
1−ηmca

� bφ1(t − 1)−ηmca E[ż(t)ż(t)T] bφ1(t − 1). (A.4)

Here, E[ż(t)ż(t)T] is the correlation matrix of ż(t). Since the correlation matrix

is a symmetric nonnegative definite matrix, it can be factorized into QDQ−1, where

Q is the eigenvector matrix (columns representing unit eigenvectors vi) and D is a

diagonal matrix with corresponding eigenvalues (λi). In addition, the eigenvectors

{vi|i = 1, 2, ..., K} form an orthonormal basis spanning RK . The weight vector bφ1

can then be represented as

bφ1(t) =

K∑

i=1

ai(t)vi, (A.5)

where ai(t) are some constant coefficients. The following lemmas are required.
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Lemma 1. Let Vi be denoted as Vi =
�

1−ηmca −ηmcaλi

�

then, ai(t) =
V t

i
ai(0)q∑K

j
V 2t

j a2
j (0)

, ∀i ∈ {1, 2, ..., K}. (A.6)

Proof. The proof is by the principle of mathematical induction.

t = 1: Substituting Eq. (A.5) in Eq. (A.4) for t=1, we get: ai(1) = Viai(0), ∀i ∈ {1, 2, ..., K}.
At each update, the weight vector bφ1(t) is normalized according to Eq. (A.3).

ai(1) =
Viai(0)q∑K

j
V 2

j a2
j (0)

, ∀i ∈ {1, 2, ..., K}. (A.7)

t = m: Assuming the result to be true for some t = m> 1 and let P =

q∑K

j
V 2m

j a2
j (0).

t = m+1: Substituting Eq. (A.5) in Eq. (A.4) for t=m, we get

ai(m+ 1) = Viai(m) =
V m+1

i
ai(0)

P
.

Upon normalizing, ai(m+ 1) =

V m+1
i

ai(0)

Pq∑K

j

V 2m+2
j

a2
j
(0)

P2

=
V m+1

i
ai(0)q∑K

j
V 2m+2

j a2
j (0)

, ∀i ∈ {1, 2, ..., K},

which is the same as substituting t=m+1 in Eq. (A.6). Therefore, by the principle of

mathematical induction, Eq. (A.6) holds true for any t > 1.

Lemma 2. Let σi be denoted as σi =

�
1−

ηmca(λi −λK)

1−ηmca −ηmcaλK

�

then, 0< σ1 < ...< σK−1 < 1. (A.8)

Proof. The condition (A.8) is straightforward if 0<
ηmca(λi −λK)

1−ηmca −ηmcaλK

< 1 is true.

The left inequality is proved first. Clearly, since λ1 > ... > λK ≥ 0 and 0 < ηmca ≤
0.5, the numerator

ηmca(λi −λK)> 0, ∀i ∈ {1, ..., K − 1} (A.9)

and the denominator 1−ηmca −ηmcaλK > 1−ηmca −ηmcaλ1

> 0.5−ηmcaλ1, ∵ ηmca < 0.5

> 0, ∵ ηmcaλ1 < 0.5 (A.10)
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To prove the right inequality, it holds

iff, ηmca(λi −λK) < 1−ηmca −ηmcaλK

iff, ηmcaλ1 < 1−ηmca

iff, 0.5 < 1−ηmca, which is true.

Lemma 3. Let Ci =

�
ai(0)

aK (0)

�
then,

ai(t) = Ciσ
t
i
aK(t), ∀i ∈ {1, ..., K − 1} (A.11)

aK(t) =
1

q∑K−1

j
σ2t

j C2
j + 1

. (A.12)

Proof. Using Eq. (A.6) and the condition (A.10), we get

ai(t + 1)

aK(t + 1)
=

�
1−ηmca −ηmcaλi

1−ηmca −ηmcaλK

�
·
�

ai(t)

aK(t)

�
, ∀i ∈ {1, ..., K − 1}

=

�
1−

ηmca(λi −λK)

1−ηmca −ηmcaλK

�
·
�

ai(t)

aK(t)

�
= σi ·

�
ai(t)

aK(t)

�
= σt+1

i
·
�

ai(0)

aK(0)

�

This implies that ai(t) = Ciσ
t
i
aK(t), ∀i ∈ {1, ..., K − 1}. Using the result from

Lemma 1 and substituting for i=n, we get

aK(t) =
V t

K
aK(0)q∑K

j
V 2t

j a2
j (0)

=
1

q∑K−1

j

� Vj

VK

�2t� a j(0)

aK (0)

�2
+ 1

=
1

q∑K−1

j
σ2t

j C2
j + 1

Lemma 4. Let τ
1/2

i denote the half-life period of ai(t), then the following inequality

holds:

τ
1/2
1 < ...< τ

1/2
K−1 (A.13)

Proof. Since aK(t) is bounded (0 < aK(t) < 1), coefficients ai(t) (∀i ∈ {1, ..., K −
1}) belong to a family of exponential-decay functions: CiaK(t)e

−t ln(1/σi). Half-life

period τ
1/2

i is the time when the value ai(t) becomes equal to half its initial value.

Therefore,

CiaK(t)σ
t
i
= CiaK(0)/2
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Using Lemma 3 and simplifying we get,

t = −
ln(2)

lnσi

+
0.5

lnσi

∗ ln




∑K−1

j
σ2t

j
C2

j
+ 1

∑K−1

j
C2

j + 1


 (A.14)

Let

∑K−1

j
σ2t

j
C2

j
+ 1

∑K−1

j
C2

j + 1
be denoted by ξ. From Lemma 2 and t > 0 we get, 0< ξ < 1

and ξ decreases monotonically with respect to t. However, for higher values of t

and consecutive σi’s, ξ does not change significantly with t and can be assumed to

be a constant. Substituting the term ξ in Eq. (A.14), we get

τ
1/2

i = −
ln(2)− 0.5 ∗ ln(ξ)

lnσi

=
ln(2)− 0.5 ∗ ln(ξ)

ln(1/σi)
(A.15)

Therefore, from Eq. (A.15) and Lemma 2 we have, τ
1/2

j−1 < τ
1/2

j , ∀ j ∈ {2, ..., K − 1}.

Definition 1. The curiosity function of the IncSFA algorithm for an observation

stream x(t) ∈ RI is defined as

Ω(x) = σK−1 =

�
1−

ηmca(λK−1−λK)

1−ηmca −ηmcaλK

�
, (A.16)

where λK 6= λK−1 denote the smallest two eigenvalues of E[ż(t)ż(t)T], z(t) ∈ RK

is the whitened output of x(t).

The next section provides proofs for the rest of the theorems.

Proofs for Theorems 2-6

The reward function (see Section 4.3.4) Rint generated by the algorithm has a Eu-

clidean norm equal to one. For the sake of convenience, Rint is denoted by R in the

rest of this section. It is assumed that R takes only non-negative values. This as-

sumption is trivial since, a scalar positive constant can be added to Rint without hav-

ing any effect on the policies learned by the Least Squares Policy Iteration (LSPI)

reinforcement learning algorithm. The following definition is useful for the rest of

the theorems.
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Definition 2. At time t, let xl denote the current easiest but not yet learned ob-

servation stream and sl denote the corresponding state. Then, the index l is given

by

l = argmin
∀i: xi∈X ′

Ω(xi), X ′ = {xi : G (xi) =
bφ,xi ∈ X }. (A.17)

Based on Ω, optimal fixed-points for the adaptive abstraction bφ and the observa-

tion stream selection policy πint are defined next.

Theorem 2. At time t, the optimal fixed-point φ∗ ∈ Φ∗ of the adaptive abstraction
bφ is equal to the J slow features of the observation stream xl .

Proof. The proof is straightforward.

Theorem 3. The optimal observation stream selection policy (π∗ : Φ∗ × S int →
A int,A int = {0 (stay), 1 (switch)}) to learn an abstraction φi ∈ Φ∗ is given by:

π∗(φi, s) = 1− ✶{sl}(s), ∀s ∈ S int.

Proof. The proof is straightforward and follows from Theorem 2. The optimal pol-

icy is such that the agent takes the action stay (= 0) in the state sl , which corresponds

to the current easiest but not yet encoded observation stream xl , and takes the action

switch (= 1) in the rest of the states.

The following lemma is useful for the rest of the analysis.

Lemma 5. Let R denote the estimated internal reward function by the algorithm at

any time t. Let πint be any arbitrary observation stream selection policy and let k0

and k1 denote sets of internal states where the policy returns a zero (stay) and one

(switch) respectively:

k0 =
�
s
�� πint(s) = 0,∀s ∈ S int

	

k1 =
�
s
�� πint(s) = 1,∀s ∈ S int

	
.

Then, the action values corresponding to each (s, a) tuple for the policy πint are
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given by:

(a) Q
stay

s∈k0
=

Rstay
ss

1− γ (A.18)

(b) Qswitch
s∈k1

=
1

(n− 1+ γ)



∑

s′∈S int\s
Rswitch

ss′ + bRswitch


+ bRstay (A.19)

(c) Qswitch
s∈k0

=
1

(n− 1)



∑

s′∈S int\s
Rswitch

ss′ + bRswitch+ (n− 1+ γ)bRstay−
γ

1− γRstay
ss




(A.20)

(d) Q
stay

s∈k1
= Rstay

ss
+

γ

(n− 1+ γ)



∑

s′∈S int\s
Rswitch

ss′ + bRswitch


+ bRstay (A.21)

where, bRswitch =
γ�

n− 1− γ(
��k1

��− 1)
�
∑

s′′∈k1

∑

s′∈S int\s′′
Rswitch

s′s′′ (A.22)

bRstay =
γ

(1− γ)
�

n− 1− γ(
��k1

��− 1)
�
∑

s′′∈k0

R
stay

s′′s′′ (A.23)

Proof. The value of a (s, a) tuple is the expected cumulative future reward that the

agent can accumulate starting by executing the action a in the state s.

(a) Q
stay

s∈k0
=

∞∑

t=0

γtRstay
ss
P stay

ss
=

Rstay
ss

1− γ
(b) Qswitch

s∈k1
=
∑

s′∈k0

�
Rswitch

ss′ + γQ
stay

s′

�
P switch

ss′ +
∑

s′∈k1\s

�
Rswitch

ss′ + γQswitch
s′

�
P switch

ss′

Substituting P switch
ss′ = 1/(n− 1) (see Section 4.3.1), k0 ∪ k1 = S int and the result

from (a), we get

=
1

n− 1



∑

s′∈S int\s
Rswitch

ss′ +
γ

1− γ
∑

s′∈k0

R
stay

s′s′ + γ
∑

s′∈k1\s
Qswitch

s′


 (A.24)

Taking a summation of Qswitch
s

over all s ∈ k1 and solving, we get,

∑

s′′∈k1

Qswitch
s′′ =

1

n− 1



∑

s′′∈k1

∑

s′∈S int\s′′
Rswitch

s′s′′ +

��k1

��γ
1− γ

∑

s′∈k0

R
stay

s′s′ + γ(
��k1

��− 1)
∑

s′∈k1

Qswitch
s′



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=

∑
s′′∈k1

∑
s′∈S int\s′′ R

switch
s′s′′ +

|k1|γ
1−γ

∑
s′∈k0

R
stay

s′s′

(n− 1− γ(
��k1

��− 1))
(A.25)

Substituting Eq. (A.25) in Eq. (A.24) and solving we get,

Qswitch
s∈k1

=
1

(n− 1+ γ)



∑

s′∈S int\s
Rswitch

ss′ + bRswitch


+ bRstay

(c) Qswitch
s∈k0

=
∑

s′∈k0\s

�
Rswitch

ss′ + γQ
stay

s′

�
P switch

ss′ +
∑

s′∈k1

�
Rswitch

ss′ + γQswitch
s′

�
P switch

ss′

=
1

n− 1



∑

s′∈S int\s
Rswitch

ss′ +
γ

1− γ
∑

s′∈k0\s
R

stay

s′s′ + γ
∑

s′∈k1

Qswitch
s′


 (A.26)

Substituting Eq. (A.25) in Eq. (A.26) and solving we get,

Qswitch
s∈k0

=
1

(n− 1)



∑

s′∈S int\s
Rswitch

ss′ + bRswitch+ (n− 1+ γ)bRstay−
γ

1− γRstay
ss




(d) Q
stay

s∈k1
= Rstay

ss
+ γQswitch

s∈k1

= Rstay
ss
+

γ

(n− 1+ γ)



∑

s′∈S int\s
Rswitch

ss′ + bRswitch


+ bRstay

Lemma 6. Let R denote the estimated reward function by the algorithm at any time

t and let sl = argmax
s

Rstay
ss

. If

Rstay
sl sl
=max(R) and Rstay

ss
<

γRstay
sl sl

(n− 1)− γ(n− 2)
, ∀s ∈ S int \ sl

then,

arg max
πint

Qπ
int

= 1− ✶{sl}(s), ∀s ∈ S int

Proof. Let πopt = 1−✶{sl}(s), ∀s ∈ S int. The proof is straightforward if the follow-

ing hold true:
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1. (a) Q
switch,πint 6=πopt

s∈k1
<Q

switch,πopt

s∈k1
& (b) Q

switch,πint 6=πopt

s∈k0
<Q

switch,πopt

s∈k1

2. (a) Q
stay,πint 6=πopt

s∈k1
<Q

stay,πopt

s∈k1
& (b) Q

stay,πint 6=πopt

s∈k0
<Q

stay,πopt

s∈k1

3. (a) Q
switch,πint 6=πopt

s∈k1
<Q

switch,πopt

s∈k0
& (b) Q

switch,πint 6=πopt

s∈k0
<Q

switch,πopt

s∈k0

4. (a) Q
stay,πint 6=πopt

s∈k1
<Q

stay,πopt

s∈k0
& (b) Q

stay,πint 6=πopt

s∈k0
<Q

stay,πopt

s∈k0

Each of the above inequalities are proved in turn. Let k0 and k1 denote sets of

states where a policy πint returns a zero (stay) and one (switch) respectively:

k0 =
¦

s
�� πint(s) = 0,∀s ∈ S int

©

k1 =
¦

s
�� πint(s) = 1,∀s ∈ S int

©
.

For the policy πopt, k0 = {sl} and k1 = S int \ sl ((n− 1) elements). Therefore, for

any other policy πint 6= πopt, either
��k1

��= n or
��k1

��< (n−1). The result for
��k1

��= n

(switch at all states) is straightforward to show. Here, the case
��k1

��< (n−1) is con-

sidered.

Proof for 1-(a): Using the condition
��k1

��< n− 1 in Eq. (A.19), we get,

Q
switch,πint 6=πopt

s∈k1
=

1

(n− 1+ γ)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(
��k1

��− 1)
�
∑

s′′∈k1

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γ

(1− γ)
�

n− 1− γ(
��k1

��− 1)
�
∑

s′′∈k0

R
stay

s′′s′′

<
1

(n− 1+ γ)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(n− 2)
�
∑

s′′∈S int

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γ

(1− γ)
�

n− 1− γ(
��k1

��− 1)
�
∑

s′′∈k0

R
stay

s′′s′′

Using the condition Rstay
ss
<

γR
stay
sl sl

(n−1)−γ(n−2)
, ∀s ∈ S int \ sl , we get

<
1

(n− 1+ γ)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(n− 2)
�
∑

s′′∈S int

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γ

(1− γ)
�

n− 1− γ(
��k1

��− 1)
�

 γ(

��k0

��− 1)

(n− 1)− γ(n− 2)
+ 1


Rstay

sl sl
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Substituting
��k0

��= n−
��k1

�� and solving, we get

=
1

(n− 1+ γ)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(n− 2)
�
∑

s′′∈S int

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γ

(1− γ)
�
(n− 1)− γ(n− 2)

�Rstay
sl sl

=Q
switch,πopt

s∈k1

Hence, Q
switch,πint 6=πopt

s∈k1
<Q

switch,πopt

s∈k1
.

Proof for 1-(b): From Eq. (A.20) we have,

Q
switch,πint 6=πopt

s∈k0
=

1

(n− 1)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(
��k1

��− 1)
�
∑

s′′∈k1

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γ

(1− γ)(n− 1)




(n− 1+ γ)�
n− 1− γ(

��k1

��− 1)
�
∑

s′′∈k0

R
stay

s′′s′′


−

γ

(n− 1)(1− γ)R
stay
ss

=
1

(n− 1+ γ)




∑

s′∈S int\s
Rswitch

ss′ +
γ

n− 1

∑

s′∈S int\s
Rswitch

ss′ +

γ(n− 1+ γ)
∑

s′′∈k1

∑

s′∈S int\s′′
Rswitch

s′s′′

(n− 1)
�

n− 1− γ(
��k1

��− 1)
�




+

γ


(n− 1+ γ)

∑

s′′∈k0

R
stay

s′′s′′ −
�

n− 1− γ(
��k1

��− 1)
�

Rstay
ss




(1− γ)(n− 1)
�

n− 1− γ(
��k1

��− 1)
�

Substituting the following in the first term of R.H.S.:

• (n− 1)− γ(n− 2)< (n− 1),

• since R has all non-negative entries
∑

s′∈S int\s
Rswitch

ss′ <
∑

s′′∈k0

∑

s′∈S int\s′′
Rswitch

s′s′′ , and

• it can easily be shown that
n− 1+ γ

n− 1
<

n− 1− γ(
��k1

��− 1)

n− 1− γ(n− 2)
, we get,
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Q
switch,πint 6=πopt

s∈k0
<

1

(n− 1+ γ)




∑

s′∈S int\s
Rswitch

ss′ +

γ
∑

s′′∈k0

∑

s′∈S int\s′′
Rswitch

s′s′′

(n− 1)− γ(n− 2)
+

γ
∑

s′′∈k1

∑

s′∈S int\s′′
Rswitch

s′s′′

�
n− 1− γ(n− 2)

�




+

γ


(n− 1+ γ)

∑

s′′∈k0

R
stay

s′′s′′ −
�

n− 1− γ(
��k1

��− 1)
�

Rstay
ss




(1− γ)(n− 1)
�

n− 1− γ(
��k1

��− 1)
�

=
1

(n− 1+ γ)




∑

s′∈S int\s′
Rswitch

ss′ +

γ
∑

s′′∈S int

∑

s′∈S int\s′′
Rswitch

s′s′′

(n− 1)− γ(n− 2)




+

γ


(n− 1+ γ)

∑

s′′∈k0

R
stay

s′′s′′ −
�

n− 1− γ(
��k1

��− 1)
�

Rstay
ss




(1− γ)(n− 1)
�

n− 1− γ(
��k1

��− 1)
�

Substituting
∑

s′′∈k0

R
stay

s′′s′′ =
∑

s′′∈k0\sl

R
stay

s′′s′′+Rstay
sl sl

and the condition Rstay
ss
<

γR
stay
sl sl

(n−1)−γ(n−2)
, ∀s ∈

S int \ sl in the second term of R.H.S., we get,

<
1

(n− 1+ γ)




∑

s′∈S int\s′
Rswitch

ss′ +

γ
∑

s′′∈S int

∑

s′∈S int\s′′
Rswitch

s′s′′

(n− 1)− γ(n− 2)




+

γRstay
sl sl


(n− 1+ γ)(

��k0

��− 1)γ

(n− 1)− γ(n− 2)
+ (n− 1+ γ)−

�
n− 1− γ(

��k1

��− 1)
�
γ

(n− 1)− γ(n− 2)




(1− γ)(n− 1)
�

n− 1− γ(
��k1

��− 1)
�

=
1

(n− 1+ γ)




∑

s′∈S int\s′
Rswitch

ss′ +

γ
∑

s′′∈S int

∑

s′∈S int\s′′
Rswitch

s′s′′

(n− 1)− γ(n− 2)




+
γRstay

sl sl

�
(n− 1+ γ)(n−

��k1

��− 1)γ+ (n− 1+ γ)(n− 1+ 2γ− nγ)− (n− 1+ γ− γ
��k1

��)γ
�

(1− γ)(n− 1)(n− 1− γ(n− 2))(n− 1− γ(
��k1

��− 1))
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Upon factoring we get,

=
1

(n− 1+ γ)




∑

s′∈S int\s′
Rswitch

ss′ +

γ
∑

s′′∈S int

∑

s′∈S int\s′′
Rswitch

s′s′′

(n− 1)− γ(n− 2)




+
γRstay

sl sl

�
(n− 1)(n− 1− γ(

��k1

��− 1))
�

(1− γ)(n− 1)(n− 1− γ(n− 2))(n− 1− γ(
��k1

��− 1))

=Q
switch,πopt

s∈k1

Hence, Q
switch,πint 6=πopt

s∈k0
<Q

switch,πopt

s∈k1
.

Proof for 2-(a): Q
stay,πint 6=πopt

s∈k1
= Rstay

ss
+ γQswitch,πint 6=πopt

s
< Rstay

ss
+ γQswitch,πopt

s
=Q

stay,πopt

s∈k1
.

Hence, Q
stay,πint 6=πopt

s∈k1
<Q

stay,πopt

s∈k1
.

Proof for 2-(b): From Eq. (A.18) we have, Q
stay,πint 6=πopt

s∈k0
=

Rstay
ss

1− γ = Rstay
ss
+
γRstay

ss

1− γ .

Using the condition Rstay
ss
<

γR
stay
sl sl

(n−1)−γ(n−2)
, ∀s ∈ S int \ sl , we get,

Q
stay,πint 6=πopt

s∈k0
< Rstay

ss
+ γ

�
γRstay

sl sl

(1− γ)(n− 1− γ(n− 2))

�
< Rstay

ss
+ γQswitch,πopt

s
=Q

stay,πopt

s∈k1
.

Hence, Q
stay,πint 6=πopt

s∈k0
<Q

stay,πopt

s∈k1
.

Proof for 3-(a): For the optimal policy πopt, the set k0 = {sl}. Therefore, if s ∈ k0,

then s = sl . Substituting this in the inequality 3-(a) that needs to proved, we get,

Q
switch,πint 6=πopt

sl∈k1
<Qswitch,πopt

sl
. (A.27)

For the policy πint, since sl ∈ k1, this implies sl /∈ k0. From Eq. (A.19) we have,

Q
switch,πint 6=πopt

sl∈k1
=

1

(n− 1+ γ)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(
��k1

��− 1)
�
∑

s′′∈k1

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γ

(1− γ)
�

n− 1− γ(
��k1

��− 1)
�
∑

s′′∈k0

R
stay

s′′s′′

Substituting the following:
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•
��k1

��< n− 1,

• since R has all non-negative entries
∑

s′′∈k1

∑

s′∈S int\s′′
Rswitch

s′s′′ <
∑

s′′∈S int

∑

s′∈S int\s′′
Rswitch

s′s′′ ,

• using the condition Rstay
ss
<

γR
stay
sl sl

(n−1)−γ(n−2)
, ∀s ∈ S int \ sl , and

• since sl /∈ k0,
∑

s′′∈k0
R

stay

s′′s′′ <
γ|k0|Rstay

sl sl

(n−1)−γ(n−2)
, we get,

<
1

(n− 1)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(n− 2)
�
∑

s′′∈S int

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γ(n−

��k1

��)
(1− γ)

�
n− 1− γ(

��k1

��− 1)
�

γRstay
sl sl

(n− 1− γ(n− 2))

Since
��k1

��≥ 1 and γ≤ 1, it can be easily shown that (n−
��k1

��)≤ (n−1−γ(
��k1

��−1)).

Using this result, we get,

≤
1

(n− 1)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(n− 2)
�
∑

s′′∈S int

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γ

(1− γ)
γRstay

sl sl

(n− 1− γ(n− 2))

=
1

(n− 1)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(n− 2)
�
∑

s′′∈S int

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γRstay

sl sl

(1− γ)(n− 1)

(n− 1) + γ− (n− 1− γ(n− 2))

(n− 1− γ(n− 2))

=
1

(n− 1)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(n− 2)
�
∑

s′′∈S int

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γRstay

sl sl

(1− γ)(n− 1)

n− 1+ γ

(n− 1− γ(n− 2))
−

γRstay
sl sl

(1− γ)(n− 1)
=Q

switch,πopt

s∈k0

Hence, Q
switch,πint 6=πopt

s∈k1
<Q

switch,πopt

s∈k0
.
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Proof for 3-(b): As discussed in the Proof for 3-(a), s = sl . Substituting the

condition
��k1

��< n− 1 in Eq. (A.20), we get,

Q
switch,πint 6=πopt

sl∈k0
=

1

(n− 1)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(
��k1

��− 1)
�
∑

s′′∈k1

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γ

(1− γ)(n− 1)




(n− 1+ γ)�
n− 1− γ(

��k1

��− 1)
�
∑

s′′∈k0

R
stay

s′′s′′


−

γ

(n− 1)(1− γ)R
stay
sl sl

<
1

(n− 1)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(n− 2)
�
∑

s′′∈k1

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γ

(1− γ)(n− 1)




(n− 1+ γ)�
n− 1− γ(

��k1

��− 1)
�
∑

s′′∈k0

R
stay

s′′s′′


−

γ

(n− 1)(1− γ)R
stay
sl sl

Substituting
∑

s′′∈k0

R
stay

s′′s′′ =
∑

s′′∈k0\sl

R
stay

s′′s′′+Rstay
sl sl

and the condition Rstay
ss
<

γR
stay
sl sl

(n−1)−γ(n−2)
, ∀s ∈

S int \ sl in the second term of R.H.S. and solving, we get,

<
1

(n− 1)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(n− 2)
�
∑

s′′∈k1

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γRstay

sl sl

(1− γ)(n− 1)

n− 1+ γ

(n− 1− γ(n− 2))
−

γRstay
sl sl

(1− γ)(n− 1)
=Q

switch,πopt

sl∈k0

Hence, Q
switch,πint 6=πopt

s∈k0
<Q

switch,πopt

s∈k0
.

Proof for 4-(a)&(b): This proof is straightforward since,

Q
stay,πint 6=πopt

s∈k1ork0
<max(Qπ

opt

) =Q
stay,πopt

s∈k0
.

Hence, Q
stay,πint 6=πopt

s∈k1
<Q

stay,πopt

s∈k0
& Q

stay,πint 6=πopt

s∈k0
<Q

stay,πopt

s∈k0
.

For a set of mild conditions, the convergence of the algorithm’s policy πint and

the adaptive abstraction bφ to their respective optimal fixed-points is proved next.

Theorem 4. Let {πint
t
}t∈N denote the sequence of observation stream selection poli-

cies generated by the algorithm for ε = 1. If Conditions (4.13),(4.14),(4.15) and

(4.16) hold,

then, for t > t0, lim
t→∞

πint
t
(s) = π∗(φ∗, s), ∀s ∈ S int
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Proof. From Eq. (4.6), the estimation error of the IncSFA algorithm at time t is

ξsfa(t) = ‖ bφt − bφt−1‖. Let ξ̇sfa(t) =
�
ξsfa(t)− ξsfa(t − 1)

�
be the backward-difference

approximation of the derivative of the estimation error. The condition ε= 1 implies

that the agent executes actions (stay or switch) randomly (uniformly) at each state.

To execute the stay action in the current state, the agent was either in the same state

or has shifted to the current state from another state at the previous time step. There-

fore, the expected learning progress made by the IncSFA is higher for the stay action

as compared to the switch action.

E


−

∑

τ

ξ̇sfa(t)

����� s(t) = si, s(t − 1) = si




≥ E

−

∑

τ

ξ̇sfa(t)

����� s(t) = si, s(t − 1) = s j


 , ∀si, s j ∈ S int, i 6= j.

(A.28)

The equality might hold for random, constant, or similar observation streams. Using

the convergence Condition (4.15) we get,

E


−

∑

τ

ξ̇sfa(t)

����� s(t) = sl , s(t − 1) = sl




> E


−

∑

τ

ξ̇sfa(t)

����� s(t) = si, s(t − 1) = s j


 , ∀si, s j ∈ S int.

(A.29)

From Eq. (A.29) and Eq. (4.9), if σ is small

�∑

τ

�
βZ(|δ− ξroc|

�
≈ 0

�
, we get,

lim
t→∞

Rt(sl , stay, sl) =max( lim
t→∞

Rt). (A.30)

In Lemma 4, I show that the error plot of a converging IncSFA abstraction resembles

that of an exponential decay function. Using this result and Condition (4.15) we get,

lim
t→∞

Rt(si, stay, si) = E


−

∑

τ

ξ̇sfa(t)

����� s(t) = si, s(t − 1) = si


 ∝∼

1

τ̄
1/2

i

∝∼ ln(Ω(xi)).

(A.31)

Using Eqs. (A.30), (A.31), Condition (4.16) in Lemma 6 and Theorem 3, we get for

t > t0,

lim
t→∞

πint
t
(s) = π∗(φ∗, s), ∀s ∈ S int
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Since the policies πint
t

and π∗(φ∗) are binary-vectors, it follows that ∃tc ∈ N (t0 <

tc <∞), s.t. for t = tc, π
int
t
= π∗(φ∗).

Theorem 5. Let { bφt}t∈N denote the sequence of adaptive abstractions generated by

the algorithm for ε = 0. If tc(> t0) ∈ N is the time when πint
t
= π∗(φ∗) and if

Conditions (4.13),(4.14),(4.15) and (4.16) hold,

then, for t > tc, lim
t→∞

bφt = φ
∗

Proof. When ε= 0, the agent exploits the observation stream selection policy (πint).

Therefore, the agent observes samples from xl and IncSFA-ROC makes learning

progress. As the ROC estimation error approaches the threshold ξroc → δ, the

term β
∑

τ

(Z(|δ− ξroc|) → τβ . By selecting a β close to

p
2πσL
τ

, for t > tc,

Rt(sl , stay, sl) = max(Rt) =⇒ πint
t
= π∗(φ∗). Therefore, from Theorem 2, it

follows that lim
t→∞

bφt = ±φ∗.

Convergence Condition (4.16) does not involve setting any algorithm parameter

and is a direct condition on the observation stream complexity. The rest of the

analysis discusses the scenario when a few of the observation streams violate the

condition.

Definition 3. Let r =
γ

(n− 1− γ(n− 2))
. A stream x is r-dominated by another

stream x′ if ln (Ω(x))< r ln
�
Ω(x′)

�
.

Theorem 6. Let {πint
t
}t∈N denote the sequence of observation stream selection poli-

cies generated by the algorithm for ε = 1. Let S int
r

be the set of states whose

observation streams are not r-dominated by xl . If Conditions (4.13),(4.14) and

(4.15) hold, then, for t > t0, πint
t
(s) has two limits points equal to

�
1− ✶{sl}(s)

�

or
�

1− ✶S int
r
(s)
�

, ∀s ∈ S int.

Proof. From Theorem 4, we get
Rstay

ss

R
stay
sl sl

≥
γ

(n− 1− γ(n− 2))
, ∀s ∈ S int

r
\ sl .

Let Rstay
ss
=

γRstay
sl sl

(n− 1− γ(n− 2))
+ εs, where εs, ∀s ∈ S int

r
\ sl are non-negative con-

stants. Let π∗ = 1− ✶{sl}(s) and bπ = 1− ✶S int
r
(s), ∀s ∈ S int. From Eq. (A.19) and
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substituting for Rstay
ss

we have,

Q
switch,bπ
s∈k1

=
1

(n− 1+ γ)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(
��k1

��− 1)
�
∑

s′′∈k1

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γ

(1− γ)
�

n− 1− γ(
��k1

��− 1)
�
∑

s′′∈k0

R
stay

s′′s′′

=
1

(n− 1+ γ)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(
��k1

��− 1)
�
∑

s′′∈k1

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γ

(1− γ)
�

n− 1− γ(
��k1

��− 1)
�


Rstay

sl sl
+
∑

s′′∈k0\sl

R
stay

s′′s′′




=
1

(n− 1+ γ)



∑

s′∈S int\s
Rswitch

ss′ +
γ�

n− 1− γ(
��k1

��− 1)
�
∑

s′′∈k1

∑

s′∈S int\s′′
Rswitch

s′s′′




+
γ

(1− γ)
�

n− 1− γ(
��k1

��− 1)
�



 

γ(
��k0

��− 1)

(n− 1)− γ(n− 2)
+ 1

!
Rstay

sl sl
+
∑

s′′∈k0\sl

εs′′




=Q
switch,π∗

s∈k1
−

γ

(n− 1+ γ)




∑

s′′∈S int

∑

s′∈S int\s′′
Rswitch

s′s′′

�
n− 1− γ(n− 2)

� −

∑

s′′∈k1

∑

s′∈S int\s′′
Rswitch

s′s′′

�
n− 1− γ(

��k1

��− 1)
�




+
γ

(1− γ)
�

n− 1− γ(
��k1

��− 1)
�
∑

s′′∈k0\sl

εs′′

=Q
switch,π∗

s∈k1
− A+ B

Both A and B are non-zero. So, clearly when B > A, Q
switch,bπ
s∈k1

>Q
switch,π∗

s∈k1
. Therefore,

argmax
πint

Qπ
int 6= π∗. Evaluating similarly for Q

stay or switch,bπ
s∈k1 or k0

we get, for the condition

B > A, arg max
πint

Qπ
int

= bπ.
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