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Anthropomorphic Robots 
(ASIMO, PETMAN, iCUB)
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Reinforcement Learning - 
Task Specific Behaviors via 
trial-error interactions

Difficulty: Pure random-
exploration in large sensory 
and joint state spaces. 

eg: (320 x 240) x (~50) 
continuous state variables!

Self supervised learning 
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 =  What is this ??

Challenge in AI?



How can I push the cup? 
grasp the cup? 

. 

. 

. 

Challenge in AI?



Supervised Learning (SL)

 
Training examples: (xi, yi), xi ~ D(x), 
yi = f(xi). x-samples, y-labels.  
 
Learning Objective: Improve a 
hypothesis h(x) by minimising a loss 
function L(y, h(x)).  
 
Examples: Artificial Neural 
Networks, Support Vector Machine



Unsupervised Learning (UL) 

!

Training examples: (xi), xi ~ 
D(x). x-samples.  
 
Learning Objective: Minimise a 
loss function that reflects some  
statistical structure of the input.  
 
Examples: Principal Component 
Analysis, Hidden Markov Models



Reinforcement Learning (RL)

Agent

Environment

ActionState Reward

Learning Objective: Take actions to maximise expected cumulative 
rewards. 
Value Function:  A number that denotes how valuable a state-action is 
in solving the objective.  
Policy: Mapping between states and actions.  
Types of RL: Batch, Open-ended.   



Markov Decision Process (MDP)

 
Defined as a 4-tuple (S, A, P, R) 
S - Fully observable state space; A - Space of actions  
P - Stationary state transition fn. ; R - Stationary reward fn.  
Possesses the Markov Property

sn sn+1
an

rn+1



Intrinsic Motivation

INTERESTING !
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Artificial Curiosity  
(Schmidhuber, 1991)

Provides a mathematical formalism for describing curiosity and 
creativity.

Interesting: Learnable but as-yet-unknown aspects of the environment.

Un-interesting: Predictable or inherently unlearnable (noise)

Curiosity Rewards: Proportional to the improvement of an internal 
model/predictor of the environment. 



Artificial Curiosity

Hi ... I am Homer



Artificial Curiosity



Artificial Curiosity

?????@@@@@!!!!!! Boring!



Artificial Curiosity

Interesting!



Artificial Curiosity

Not interesting anymore!



Artificial Curiosity

Now this slide is boring! Move on!
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Curiosity-Driven RL (CDRL)

CDRL objective : Maximise accumulation of expected cumulative 
curiosity rewards.

Agent is motivated to explore wherever it is makes maximum 
learning progress. 

Task-independent intrinsic reward function

Challenges in CDRL: High dimensionality of the state spaces, non-
stationary rewards
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Principal Component Analysis 
(PCA)

Unsupervised Learning method 

Extracts linear uncorrelated 
feature vectors, which 
represent directions of maximal 
variance in the input data.  

Eigen-Decomposition 

Dimensionality reduction: 
Project input data on fewer 
PCA vectors (m <  n): 
 
   y      =     Vpca                   x   T

(m x 1)     (m x n)    (n x 1)

V1
V2

v1

yi



Slow Feature Analysis  
(Wiskott and Sejnowski, 2002)

!

!

!

Unsupervised learning method 

Uses temporal coherence in the input data 

Extracts slowly varying components from rapidly changing raw 
sensory inputs (Slowness Learning)



PCA vs SFA



SFA Formalised
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SFA Implementation via Eigen-
Vector based approach (Linear)

Whitening: Input is normalised to have zero mean and unit variance 
via PCA-1 (V1)

Derivative: A fast approximation of the whitened input is computed 
using backward-difference.

Minor Components: Extract components with least Eigen-values of 
the derivative signal using PCA-2 (V2)

Slow Features: Vsf  = V1     V2

SFA Outputs:  y(t) = Vsf       x(t)   T



SFA Examples

SFA

QUADRATIC 
EXPANSION



SFA Examples

Input Image StreamEnvironment

First Slow Feature Output



SFA Examples
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SFA for RL?

Laplacian Eigen Maps (LEMs):

(a) A low-dimensional embedding 
of the state-space, which captures 
the local-connectedness between 
the states (Adjacency).

(b) Useful for representing value-
functions for RL  (Proto-value 
functions).  

(c) LEMs are non-parametric - 
dimensionality scales with the 
number of data points.
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SFA for RL?

SFA is a low-complex linear 
function approximation of 
LEMs 

SFA is a parametric method 
that generalises to unseen 
data.

Can therefore be a good 
preprocessor for RL 
(Legenstein et al. 2010, 
Kompella et al. 2011, Luciw 
and Schmidhuber, 2012). 
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SFA for Open-Ended Online RL?

Limitations of SFA for open-ended online learning RL agents: 

Estimates covariance matrices via batch processing. 

Cubic computational complexity.



Incremental Slow Feature Analysis 
(IncSFA)

Slow, but one step at a time!
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Incremental Slow Feature Analysis 
(Kompella et al., 2011)

Incremental SFA (IncSFA) is an online implementation of SFA

Adaptive to changing input statistics 

Linear computational complexity

Reduced sensitivity to outliers

Adds to the biological plausibility of batch SFA



Batch SFA Re-Visited

Whitening: Input is normalised to have zero mean and 
unit variance via PCA-1 (V1) 

Minor Components: Extract components with least 
Eigen-values of the derivative signal using PCA-2 (V2) 

Slow Features: Vsf  = V1     V2
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IncSFA Simplified

Incremental whitening using Candid Covariance-free 
Incremental PCA (CCIPCA).

Incremental extraction of minor components using 
Covariance-free Incremental MCA (CIMCA).

CCIPCA Derivative CIMCASample
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Candid Covariance-free Incremental PCA  
(CCIPCA; Weng et al.)

Updates eigenvalues and 
eigenvectors from each 
centred observation.

Hebbian Update (Δw ∝ ηxiyi) 
+ Residual

Intuitive to tune learning rate
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Covariance-free Minor Component Analysis  
(CIMCA; Peng et al.)

Based on Peng’s MCA 
modifications:  
    (a) Covariance free  
    (b) Normalisation step

Anti-Hebbian + Sequential 
addition. 

Constant learning rate - no 
need for dynamic rate 
scheduling.
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Sense

Update mean & 
de-mean the input

Update whitening matrix 
& normalize the input

Compute derivative of  
whitened input

Update minor component 
vectors
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Take-Home Message & Questions?

IncSFA is a low-complex incremental slow feature analysis algorithm. 

FAQs: 

Is IncSFA truly incremental? 

How easy is it to set the learning rates? 

Do IncSFA features always converge to their batch counterparts? 

Is IncSFA code available for public?  

Python: http://www.idsia.ch/~kompella/codes/IncSFA.zip 

Matlab: http://www.idsia.ch/~luciw/incsfa.html

http://www.idsia.ch/~kompella/codes/IncSFA.zip
http://www.idsia.ch/~luciw/incsfa.html
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Recap

Task: An online learning framework that is  
              — curiosity-driven and  
              — enables skills acquisition from  
              — high-dimensional video inputs for humanoid robots.

How to make the robot curious?  
 
        - The theory of Artificial Curiosity

How to handle high dimensional video inputs online?  
 
        - Incremental Slow Feature Analysis (IncSFA)
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Modular Incremental Slow Feature Analysis
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Curious Dr. MISFA  
(Kompella et al. 2012)

Updating Abstraction Updating Input-Stream 
Selection Policy

~ Solved
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Curious Dr. MISFA Architecture

1. An internal RL agent

2. An adaptive IncSFA-ROC 
abstraction module

3. A gating system
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(1) Curious Dr. MISFA’s RL Agent

Internal Environment

Discrete states (S   ): 
{s1, …, sn } equal to the 
number of input streams

At each state si   the agent 
observes 𝜏-samples from xi.

Actions (A  ): {stay, switch}

int

intint

int int

int

int

int

int

int

int

s1

s2

s3

=  11221122…

= 22332233…

int

int

int
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(2) Curious Dr. MISFA’s  
Abstraction Estimator 

Coupled IncSFA-ROC algorithm

IncSFA learns slow feature abstractions from input.

Robust Online Clustering (ROC; Guedalia et al.)  is a clustering 
algorithm that learns a discrete mapping between the slow feature 
outputs w.r.t. to the subjective state space (S†).  
  
    — Online agglomerative clustering algorithm  
    — Cluster centres merge if they are similar to each other 

IncSFA ROCSamples
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Subjective State Space (S†)

Proprioceptive states and 
discrete values of previously 
encoded abstraction outputs.

Multiple nodes of ROC algorithm 
are used to map slow-feature 
outputs to the subjective states. 

Dimensionality of the subjective-
state space increases as the robot 
acquires more abstractions.
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Curiosity Reward

For each slow-feature output, the closest ROC node is activated and the 
corresponding mean-squared estimation error is computed. 

A total estimation error is computed as a sum of stored errors 
corresponding to all the nodes. 
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difference approximation:  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The agent’s reward function is updated at every iteration as follows:  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Input Stream Selection Policy (𝛑int)

𝛑int : Sint   → {stay, switch}

Learned through Least-Squares Temporal Difference (LSTD) approach 
using the current estimate of the reward function.

Agent explores using a decaying epsilon-greedy strategy over the input-
stream selection policy.



(c) Gating System
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Curiosity Function: Quantifies learning difficulty of the abstraction 
estimator (Ω : X → [0,1])

Ω induces a total ordering among the input streams.  

Easier to encode input streams have lower Ω values.







x1

x2



Abstraction Learning to Skill Acquisition



Abstraction Learning to Skill Acquisition



Skill Acquisition using  
Curious Dr. MISFA (Kompella et al. 2014)

Task independent curiosity-driven skill acquisition algorithm



Skill Acquisition using  
Curious Dr. MISFA (Kompella et al. 2014)

Task independent curiosity-driven skill acquisition algorithm

Combines Curious Dr. MISFA with the options Framework 

Curious Dr. MISFA - Extracts slow feature abstractions as quickly as 
possible 

Options - Builds the abstractions into skills simultaneously
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Options Framework

Option: Temporally extended 
courses of actions. 

Formally defined as a tuple  O = 
〈I, β, π〉:   
 
I ⊆ S (Initiation set),  
 
β : S → [0,1] (Termination 
cond.),  
 
π : I ⨉ A → [0,1] (Option policy)

Executing option → High-
dimensional observations
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Exploratory Options (Oe)

Oe = 〈Ie , βe , πe 〉 

Ie  ⊆ S†  

𝛑e : Exploratory-option’s 
stochastic policy is a random 
walk in option’s state-space 

βe : The option terminates 
after 𝝉 time-steps since its 
execution.
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Target Options (Acquired Skills)

OL  = 〈IL , βL , ϕ , πL 〉 

Target option’s policy maximises the variation of observed feature-
outputs.
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Learning a Target Option (OL)

Say Curious Dr. MISFA learns an abstraction ϕ corresponding to xj

Initiation set: IL  = ( Ie ⨉ Sɸ )

Target option policy ( πL  : IL  → A ) : Developed through LSPI using: 
- Estimated option’s transition model from samples generated by 𝞹e. 

- Estimated options’ reward model using diff. of subseq. abstraction 
activations:

Termination Condition: Option terminates whenever the agent observes 
the maximum of estimated reward model.

i

i j i

ii
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Summary of Policies Involved

𝛑int : Internal Policy that is learned to determine which exploratory 
option to execute.

𝛑e : Exploratory-option’s stochastic policy that is used to observe high-
dimensional observations to update slow feature abstraction. 

𝛑L : Target-option’s deterministic policy that is learned to maximize 
variation in the slow-feature abstraction output.
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iCub’s state space dimensionality 
!

Vision: 640 x 480 pixels  
Joints: 51 motors 
Total = 640 x 480 x 51  
         = (15,667,200) states variables!

Our Focus: 

Low-dimensional joint state space  
embedding learned apriori



Experiment  1 
!

iCub Learns to Topple a Cup
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Experiment 2 
!

iCub Learns to Grasp a Cup



https://www.youtube.com/watch?v=OTqdXbTEZpE

https://www.youtube.com/watch?v=OTqdXbTEZpE
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Related work  
(Skill Acquisition in RL via Intrinsic Motivation)

Simple Domains: 

Bakker & Schmidhuber [2004] - (Hassle; Hierarchical RL) 

Stout & Barto [2010] - (Competence-based IM) 

Pape et al. [2012] - (tactile skills on a biomimetic finger)
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Related work  
(Skill Acquisition in RL via Intrinsic Motivation)

Attempts to find skills using feature-abstractions in the domain of Humanoid 
robots:

Hart [2009] - (DEDS + task-specific IM) 

Konidaris [2009-2011] - (Options + ART tags + pre-existing abstraction 
library), uBot.

Mugan & Kuipers [2012] - (QLAP, assumes low-level object tracking models)

Barnes & Oudeyer [2013] - (SAGG-RIAC, Competence progress + heuristics 
+ subgoals, task-dependent)

Ngo et al. [2012-2013] - (selective sampling + Curiosity, Overhead camera + 
pre-designed sensori-motor abstractions)
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Take-Home Message

Curious Dr. MISFA is an online active modular incremental SFA.

Skill acquisition using Curious Dr. MISFA is a task-independent 
method that demonstrates intrinsically motivated skill acquisition 
from raw-pixel streams on a real humanoid robot. 
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Disclaimer

Some of the artwork used in this presentation was downloaded 
from Google Images.  

Presenter does not wish to use them for any commercial 
purposes.



Thank you


