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Abstract—Humanoids have to deal with novel, unsupervised
high-dimensional visual input streams. Our new method Au-
toIncSFA learns to compactly represent such complex sensory
input sequences by very few meaningful features corresponding
to high-level spatio-temporal abstractions, such as: a person is
approaching me, or: an object was toppled. We explain the
advantages of AutoIncSFA over previous related methods, and
show that the compact codes greatly facilitate the task of a
reinforcement learner driving the humanoid to actively explore
its world like a playing baby, maximizing intrinsic curiosity
reward signals for reaching states corresponding to previously
unpredicted AutoIncSFA features.

I. INTRODUCTION

Human beings are able to acquire many skills based on
interaction with the environment even without the intervention
of a teacher. On humanoid robots, reinforcement learning (RL)
[1], [2] could be used to learn skill repertoires, especially
if there are self-generated intrinsic curiosity rewards [3]–
[7] for action sequences leading to the discovery of new
regularities in the observations. Most RL algorithms, however,
tend to work only if the dimensionality of the state space
is small, or its structure is very simple. To deal with the
complex, massive streams of raw sensory information obtained
through vision as primary sensor modality, it is essential to
reduce the input dimensionality, building low-dimensional but
informative representations of the environment.

Here we propose an unsupervised learning system that
greatly reduces the dimensionality of a robot’s vision data,
called AutoIncSFA, which is a novel combination of an
autoencoder (AE) [8] and Incremental Slow Feature Analysis
(IncSFA) [9], designed to extract few abstract spatio-temporal
features that can feed an RL robot with inputs. The AE
performs spatial compression while IncSFA extracts spatio-
temporal features that change slowly over time. Legenstein
et al. [10] have shown a similar two stage learning system
composed of a hierarchical slow feature analysis (H-SFA)
network [11] for preprocessing and a simple reward-trained
neural network on top. This batch technique is not well-suited
to developmental learning though. Our method, however, is
completely incremental, and helps to make an intrinsically
motivated [3], [6], [7] robot learn interesting behaviors from
scratch, based on raw pixel input streams.

The rest of this paper is organized as follows. Section I-A
reviews SFA. Sections I-B and I-C introduce IncSFA and Au-
toencoders, respectively. Sec. II presents AutoIncSFA. Sec. III

Fig. 1. (a) Simulated iCub watching a flat board move back and forth; (b)
sample image from the input dataset; (c) slowest Hierarchical SFA output,
coding for the board position.

describes several experiments with an iCub humanoid robot
learning several skills, by training RL machines to achieve
states leading to novel (initially unpredictable, but learnable)
AutoIncSFA features.

A. Slow Feature Analysis (SFA)

Slow Feature Analysis (SFA) [12] is an unsupervised learn-
ing technique guided by the slowness principle. In many
settings, the best functions mapping the input stream to the
most slowly changing output signals are representative of some
fundamental invariant agent-world property [13], abstracting
away irrelevant details picked up by the sensors that often
change at a much faster timescale. Consider for example a
mobile agent with high-dimensional video input exploring an
otherwise static room. The input is caused by the agent’s posi-
tion and orientation, and the emerging slow features compactly
encode this information [11].

Formally, SFA is concerned with the following optimization
problem:

Given an I-dimensional input signal x(t) =
[x1(t), ..., xI(t)]

T , find a set of J instantaneous real-valued
functions g(x) = [g1(x), ..., gJ(x)]T , which together generate
a J-dimensional output signal y(t) = [y1(t), ..., yJ(t)]T with
yj(t) := gj(x(t)), such that for each j ∈ {1, ..., J}

∆j := ∆(yj) := 〈ẏ2j 〉 is minimal (1)

under the constraints

〈yj〉 = 0 (zero mean), (2)
〈y2j 〉 = 1 (unit variance), (3)

∀i < j : 〈yiyj〉 = 0 (decorrelation and order), (4)
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with 〈·〉 and ẏ indicating temporal averaging and the derivative
of y, respectively.

The problem is to find instantaneous functions gj generating
different output signals that are as slowly varying as possible.
The decorrelation constraint (4) ensures that different functions
gj do not code for the same features. The other constraints
(2) and (3) avoid trivial constant output solutions. The above
optimization problem is solved by computing the principal
components (with smallest eigenvalues) of a whitened dif-
ference signal, where whitening produces decorrelated input
dimensions with unit variance.

Given an input signal with two components that vary
quickly over time (e.g., x(t) given by x1(t) = sin(t) +
cos(11 t)2, x2(t) = cos(11 t), t ∈ [0, 2π]), SFA will
find the slowest feature hidden in the signal (here: y1(t) =
x1(t) − x2(t)2 = sin(t)). Sometimes, however, the slowest
component is not the most intuitive one; for example when
observing an object that moves in front of a camera and
occasionally leaves the field of view, the slowest feature is
the presence/absence of the object, not its position.

Figure 1 [9] illustrates the behavior of a Hierarchical-
SFA network on a simple simulated interactor, modeled as
a flat rectangular board that moves toward and away from
the observer (camera of the simulated robot). Hierarchical
SFA finds a slow feature that codes instantaneously for the
position of the interactor (Figure 1(b)), like place cells in the
hippocampus.

A straightforward implementation of the equations 1-4 is
batch-wise SFA [12]. However, this approach has several
shortcomings:

1) Batch-wise SFA techniques estimate or store covariance
matrices from input data, which is expensive for open-
ended learning.

2) SFA units are driven by the input signal’s derivative [12]
approximated by the difference in the signal between
successive time instants. For constant signals, however,
computing the principal components of the difference
signal’s covariance matrix will result in singularity er-
rors, since the matrix won’t have full rank. This is an
important problem in humanoid robot applications where
often only a small part of the input image changes. Also,
since the covariance matrix of the difference signal is
used, this does not extend well to episodic learning.

3) Environments of real robots typically contain uncon-
trolled external factors that are spatially insignificant
but may change more slowly than the object of interest,
greatly affecting SFA outputs.

4) Generalization properties of Hierarchical SFA are lim-
ited. For example, training H-SFA on one human inter-
actor, but testing on another, may yield erroneous output.

Shortcomings (1,2) are overcome by using incremental slow
feature analysis (IncSFA) [9].

B. Incremental Slow Feature Analysis (IncSFA)

SFA uses principal component analysis (PCA) [14] twice.
In the first stage, PCA whitens the signal to decorrelate it

Fig. 2. Hierarchical Incremental Slow Feature Analysis (H-IncSFA) Network

with unit variance along each PC direction. In the second
stage, PCA on the derivative of the whitened signal yields
slow features. IncSFA replaces the batch PCA by incremental
alternates. In the pre-whitening stage IncSFA uses the state-
of-the-art incremental PCA method, Candid Covariance-Free
Incremental Principal Component Analysis (CCIPCA) [15].
Since CCIPCA is not feasible for the second stage as the
slow features correspond to the least significant components,
Minor Components Analysis (MCA) [16]–[18] is used. It in-
crementally extracts the principal component with the smallest
eigenvalue (the slowest feature). To extract multiple minor
components in parallel, it uses MCA with sequential addi-
tion [17].

Kompella et al. [9] also discuss an implementation of
hierarchical IncSFA (H-IncSFA) to handle high-dimensional
image data (Figure 2). The hierarchical network has 616 units
spread over three layers, each layer trained sequentially from
bottom to top. H-IncSFA does not need to store covariance
matrix or input data and is therefore suitable to open-ended
developmental learning.

However, H-IncSFA still does not overcome the issues con-
cerning the effect of spatially insignificant and slowly varying
external factors. In addition, the higher layers of the H-IncSFA
network need the lower layers to converge first. Hence more
samples are required before the network is fully functional. A
combination with incremental spatial compression techniques
such as AutoEncoders (AE) can potentially overcome these
issues. An AE with a reduced hidden representation codes only
for the dominant spatial information in the dataset, therefore
the final output is not severely affected by insignificant yet
slowly changing environmental elements. Spatial compression
also helps to eliminate much of the redundant static informa-
tion in the data, resulting in a reduction of the number of
IncSFA units.

C. Spatial Compression: Autoencoders

Autoencoders (AEs) are widely used to extract robust
features from the data, following the unsupervised encoder-
decoder paradigm: A non-linear input transformation yields a
compact code sufficient to reconstruct the data. Typically a
neural network is trained to implement this identity function
under constraints such as: (a) the hidden code layer is much
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smaller than the input layer, e.g., [13], (b) the latent represen-
tation across the code layer should be sparse, (c) the input is
viewed as being noisy (denoising AE [19]), (d) the mapping
should have low information-theoretic complexity [20], [21].
AEs tend to generate interesting and useful feature detectors
representing only basic constituent features of the data in
a way that is robust to noise and perturbations. Applied to
image patches [22], AEs learn biologically plausible Gabor-
like filters resembling the responses of the striate mammalian
cortex [23]. AEs are often used to initialize parameters of deep
architectures [19], to perform non-linear PCA [24], to find
sparse and/or low-complexity codes [20], or to reduce input
dimensionality for RL [25]. Here we briefly describe the basic
concepts.

Fig. 3. Schematic representation of an AE. The input x is mapped onto the
latent code h (of smaller dimension than x), from which x′ is reconstructed.

An auto-encoder (AE) takes an input x ∈ Rd and maps
it to the latent representation h ∈ Rd′ using a deterministic
mapping function of the type

h = fθ = σ(Wx + b) (5)

where σ(·) is a non-linear function and the parameters are
θ = {W, b}. This code is then used to reconstruct the input
into the vector x′ by reverse mapping of f :

x′ = fθ′(h) = σ(W ′h + b′) (6)

with θ′ = {W ′, b′}. In the most widely used variant, the two
parameter sets are constrained to be of the form W ′ = WT ,
using the same weights for encoding and decoding; the AE
is said to have tied weights. Each training pattern xi is
then mapped onto its code hi and its reconstruction x′i. A
schematic representation is shown in Figure 3. The parameters
are optimized via minimization of an appropriate cost function,
usually MSE,

E(θ∗, θ′∗) = arg min
θ∗,θ′∗

1

2n

n∑
i=1

||xi − x′i||22 (7)

over the training set Dn = {(x0, t0), ..., (xn, tn)}.
Variations of this model obtain salient features [19], [20]

and deal with overcomplete representations [20], [22], [26].
Here we do not need such constraints as the hidden represen-
tation is not overcomplete.

II. METHOD (AUTOINCSFA)

Since AEs are able to find compact representations of the
relevant components of visual input, and IncSFA can extract
relevant variation in time, we propose the following approach

to dimensionality reduction of a robot’s visual input in both
space and time:

1) Input Signal: Acquire the current raw I-dimensional
input as vector x̌(t).

2) Normalization: Normalize the input signal to obtain

x(t) := [x1(t), ..., xI(t)] (8)

with xi(t) :=
x̌i(t)− 〈x̌i〉

F
(9)

where, F is an upper bound of x
so that 〈xi〉 = 0, (10)
and 0 ≤ xi < 1. (11)

3) AE Update: For each input pattern x(t), infer the
reconstruction x′ and update the weights of the model
using gradient descent. The weights are used to get the
code h(t).

4) IncSFA Update:
a) Whitening by CCIPCA: The hidden unit activa-

tions h(t) are normalized to generate z(t) with
zero mean and identity covariance matrix I. This
so-called whitening can be done incrementally with
the help of Candid Covariance-free Incremental
Principal Component Analysis (CCIPCA) on h(t).

b) Derivative signal: To capture the variation of the
signal over time, z(t) is differentiated with respect
to t to produce ż(t). We use the difference over
a single time step as a fast approximation of the
derivative.

c) Slow Features: By applying incremental minor
component analysis to the matrix 〈żżT〉, J eigen-
vectors with the lowest eigenvalues λj are ex-
tracted. These are the current estimates of the slow
features; W(t).

5) Output: Then, y(t) = zT (t)W(t) is the AutoIncSFA
output.

III. RESULTS

Fig. 4. The network architecture of AutoIncSFA. It contains a single layer
of AEs with a single IncSFA unit. The output is fed to either a regressor or
a reinforcement learner.

We evaluate the capacity of our algorithm by testing it
on an iCub humanoid robot [27]. The robot receives a
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high-dimensional video stream, converted to grayscale and
downsampled to 83×100 pixels (i.e., an input dimension of
I = 8, 300). Figure 4 illustrates the AutoIncSFA network
architecture consisting of an AE with 100 hidden units and
a single IncSFA unit on top.

A. Human Interaction Experiment

Fig. 5. (a) Experimental Setup: person moving toward and away from the
robot. (b-e) Sample images from the dataset, some of which show external
elements: (c) Opening/closing of the door in the corridor; (d) people passing
by in the corridor; (e) Appearance of leg and shadow of a person sitting at
the table.

TABLE I
MOVING ELEMENTS IN THE SCENE

Moving Element Spatial Significance Occurrence
Door opening/closing ∼1.5% once

People passing by ∼2.1% ∼10 times
Person’s leg appearance ∼4.5% ∼50 times

Interactor’s motion ∼30% ∼200 times b&forth

To evaluate the performance of AutoIncSFA and as a
proof of concept, we compare to results of the state-of-the-
art batch H-SFA network. A human interactor is walking
freely back and forth over the range [0.6, 3] meters in front
of a real iCub robot as shown in Figure 5(a). Figure 5(b)
shows a sample image from the dataset of 3000 images
collected from the robot’s left eye. To test the robustness
of our model, we infused several spatially insignificant but
quite natural external elements in the dataset: a door that
opens and closes in the corridor (see top-left corner in Figure
5(c)), people passing by in the corridor (Figure 5(d)), and a
sitting man’s visible legs and shadow (see bottom-right corner
of Figure 5(e)). Table 1 summarizes the moving elements
in the dataset along with their spatial significance and their
temporal occurrence. A video of the dataset can be found at:
http://www.youtube.com/watch?v=T8jZjN4IZ14

Fig. 6. Response of unit 1 with respect to position, (a) in the H-SFA network;
(b) in the AutoIncSFA network. (position (x-axis) scaled in dm)

Both Hierarchical SFA and our model AutoIncSFA are
trained on the video footage above. A test set contains 24
positions within the range of [0.6, 3] meters, i.e., each position
is separated by 10 cm. Figures 6(a)-(b) show the first output
unit of each network plotted with respect to the position of
the interactor. We see that H-SFA completely fails, while our
method replicates the simulated result (Figure 1(c)), coding for
the position of the human interactor. H-SFA is highly sensitive
to slowly varying elements despite their spatial insignificance.

Fig. 7. Response of the first 2 units as a function of time. H-SFA: (a)
Unit 1 codes for the opening/closing of the door in the corridor; (b) unit 2
detects people passing by. AutoIncSFA: (c) Unit 1 encodes the interactor’s
movement in front of the robot; (d) Unit 2 encodes the second harmonic of
the interactor’s movement. (time (x-axis) is represented by image samples)

Analyzing the output features of H-SFA, we found that
most features code for slowly occurring noisy elements, such
as the door opening or closing and people passing by. Only
subsequent units encode the interactor position, which usually
gets mixed with higher frequencies of the first units. Figure
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7(a) shows the activation of H-SFA unit 1 as a function
of time. It encodes the door opened at about t=2400. The
second unit (Figure 7(b)) detects people moving in the corri-
dor. AutoIncSFA, however, gets rid of spatially insignificant
image variations, coding only for dominant ones. Its first unit
encodes the interactor’s movement (a half-sine wave over the
interactor’s positions), the second its 2nd harmonic (a full
sine wave over the interactor’s positions) [11]. We expect our
method also to be robust to other small variations of this type.

AutoIncSFA generalizes well to unseen data. We trained
it with an interactor shown in Figure 8(a) but tested with a
different one shown in Figure 8(b). Figure 8(c) shows the
first AutoIncSFA unit’s output, encoding the position of the
second interactor. A video of the test set for the second
interactor can be found at: http://www.youtube.com/watch?v=
syUJWCphBOs.

Fig. 8. (a) Sample image from the training set. (b) Sample image from a test
set with a different interactor. (c) AutoIncSFA’s output response with respect
to the new interactor’s position. (position (x-axis) scaled in dm)

B. Objects Interaction Experiment

One important application area of AutoIncSFA is episodic
learning. Much of developmental learning happens in series
of several episodes of interactions with the environment. With
a minor modification, the algorithm can be readily extended
to episodic tasks. The derivative signal, which is computed as
a difference over a single time step, is not computed for the
starting sample of each episode, and therefore only updating
the whitening vector, not the slow feature vector. Here we
present results obtained through the robot’s interactions with
objects in it’s field of view.

1) Single Object Interaction: A plastic cup is placed in
the iCub robot’s field of view as shown in Figure 9(a). The
robot performs motor babbling in one joint using a movement
paradigm presented by Franzius et. al [11]. During the course
of babbling, it happens to topple the cup on its way (Figures
9(c)-(e)); the episode ends after it. Since the cup being toppled
or upright is the “slowest” event in the scene (ignoring the
trivial case of static background), AutoIncSFA builds a step
response for the object’s state (toppled or upright). Figure 9(b)
shows the first output unit at the end of 70th episode (∼ 7000
images). Such a clear step response invariant to the robot’s arm
position is a highly useful feature, greatly facilitating training
of a subsequent regressor or a reinforcement learner. A video

Fig. 9. (a) Experimental Setup (b) AutoIncSFA network output unit-1 at the
end of 70th episode. It codes for the toppling of the plastic cup. It is highly
active when the cup is toppled, and nearly inactive otherwise (x-axis unit time
is represented by image samples in an episode). (c)-(e) Sequence of images
when the robot topples the object during motor babbling.

of the experiment can be found at http://www.youtube.com/
watch?v=1piHHIvRWe0.

2) Multiple Object Interaction: Here we conduct an exper-
iment similar to the one above, but with two objects in the
robot’s field of view (a cup and a bottle). The robot performs
motor babbling to topple both the objects—see Figures 10(c)-
(e). Toppling events of the objects are statistically independent,
hence AutoIncSFA learns to code individually for each of the
object. Figure 10(a) shows the first output feature at the end
of the 145th episode(∼ 15,000 images), which encodes the
state of the bottle independently from the state of the cup.
Figure 10(b) shows the second slow feature which encodes
the state of the cup independently from the state of the bottle.
The coding order of objects depends on the relative frequency
of their toppling events. A video of the experiment can be
found at http://www.youtube.com/watch?v=WSGebK-wd2I.

C. Learning a Repertoire of Actions Through Regularity Dis-
covery

The Formal Theory of Fun and Creativity [6], [7] mathe-
matically formalizes driving forces and value functions behind
all kinds of curious and creative behavior. Consider an agent
living in an initially unknown environment. At any given
time, it uses one of the many reinforcement learning (RL)
methods [1] to maximize not only expected future external
reward for achieving certain goals, such as avoiding hunger
/ empty batteries / obstacles etc, but also intrinsic reward
for action sequences that improve an internal model of the
environmental responses to its actions. Such an agent contin-
ually learns to better predict / explain / compress the growing
history of observations influenced by its experiments, actively
influencing the input stream such that it contains previously
unknown but learnable algorithmic regularities which become
known and boring once there is no additional subjective
compression progress or learning progress any more [3]–
[5], [7]. Schmidhuber et al. have argued that the particular
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Fig. 10. (a) AutoIncSFA network output unit-1, which codes for the toppling
of the bottle in the scene. The output is high when the bottle is toppled and
low when it is not, and ignores the state of the second object in the scene
(plastic cup). (b) AutoIncSFA network output unit-2, which codes for the
toppling of the plastic cup, ignoring the state of the bottle (x-axis unit time
is represented by image samples in an episode). Repertoire of Actions: (c)
Explore (d) Topple the bottle (e) Topple the cup

compression progress-based utility functions associated with
this theory explain essential aspects of intelligence including
selective attention, curiosity, creativity, science, art, music,
humor, e.g., [6], [7].

Essentially, curiosity-driven agents not only focus on poten-
tially hard-to-solve externally posed tasks, but also creatively
invent self-generated tasks that have the property of currently
being still unsolvable but easily learnable, given the agent’s
present knowledge, such that the agent is continually motivated
to improve its understanding of how the world works, and
what can be done in it. Its growing skill repertoire may at
some point help to achieve more external reward as well [3],
[5], [7].

The permanent intrinsic goal of achieving additional com-
pression progress / prediction progress on the observation
history so far can be partially approximated through something
our AutoIncSFA is good at, namely, the discovery of invariant
spatio-temporal properties of the input stream. Note that any
such invariance must reflect an environmental regularity that
allows for better compressing the observed data. Hence we
can implement a curious, playful robot by simply making it
wish to learn to create additional, still unknown, AutoIncSFA-
encodable invariances.

As a proof of concept, we build an unsupervised, curiosity-
driven, three-stage system with an AutoIncSFA module for
extracting spatio-temporal regularities from the visual input
stream, a predictor module that learns to predict the slow
features, and an RL machine motivated to learn policies to
reach states that reduce the errors of the predictor modules,
thus being interested in unknown, yet learnable invariances,
that is, regularity discovery, or compression progress [6], [7],
[28]. Since the focus of this paper is on the construction
of useful invariant representations of the environment, not
on learning complex actions skills, we use a straightforward
tabular action-value-based reinforcement learner and a tabular

least-squares predictor. The predictor takes a state-action pairs
as an input and predicts the corresponding AutoIncSFA output
at time t. The reward function is given by the decrease
in prediction error, and thus rewards the agent for learning
progress. The intrinsic curiosity reward signal allows the robot
to focus on those parts of the environment that can easily be
learned by its limited learning methods.

Learning Phase: The robot performs motor babbling in its
(limited) joint space, affecting objects in the scene. With the
video from the robot’s eyes as an input sequence, AutoIncSFA
automatically builds several abstract features of the robot’s
interaction with the environment as discussed in Section III-B.
Once the features converge, a predictor is trained to predict
the slow features, together with an RL algorithm that learns
a policy for improving the accuracy of the predictor, in an
episodic manner. An RL episode ends once the object is
toppled or the episode counter reaches its upper-limit (25
steps). In experiments with multiple objects, multiple RL
modules are coupled to the AutoIncSFA output features, such
that several policies (one for invoking each feature) can be
learned and stored for later use. Since the features developed
by AutoIncSFA invariantly encode various events in the scene,
the RL modules can learn a growing repertoire of robot
behaviors.

1) Single Object Interaction: We use a playing RL agent
with 10 discrete states (joint positions) and 2 actions (left or
right) and a setup similar to the one of Section III-B1. It
executes the learning procedure above, creating a policy to
topple the plastic cup. The reward signal is derived from the
reduction of prediction error [3] (ε̇p) as:

R =

{
0 ε̇p > 0
|ε̇p| ε̇p < 0

Figures 11(a)-(c) show the progress of the RL agent over
several episodes. Figure 11(a) shows the Q-table, state-value
table, predictor and prediction error entries at the end of the
5th episode. In state 3 the robot is in contact with the cup and
topples it by either moving left or right. This is reflected in
the Q-table and the predictor, where the values peak at the 3rd

state. The prediction error is high since the predictor has not
yet learnt the step response. Figure 11(b) and (c) correspond
to the 10th and 15th episode. The predictor now has low
error, and the Q-table and state-value table almost converged,
reflecting a policy for toppling. Figure 11(d) shows a plot of
the intrinsic curiosity reward received by the RL agent over
several episodes, We see from Figure 11(d) how the reward
decreases, indicating that the robot stops the toppling behavior
once it has acquired that skill. In a setting with many learnable
regularities, the robot could now focus its attention on learning
the next skill.

2) Multiple Object Interaction: Next, we conducted another
experiment with a setup similar to the one discussed in III-B2,
along with two different predictors and reinforcement learners
with 11 states (joint positions) and 2 actions (left and right).
Since AutoIncSFA learns two features that invariantly encode
the states of the objects, these feature outputs can now serve
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Fig. 11. (a)-(c) Progress of the RL agent at the end of the 5th, 10th and
15th episode. Q-table and state-value table show the developing policy. The
predictor predicts the step response in the AutoIncSFA output. The robot
topples at state 3 either by moving left or right. The predictor learns to reduce
prediction error over the episodes. (d) Plot of the intrinsic curiosity reward
signal derived from the decrease in prediction error. (x-axis represents number
of episodes)

as an input to the two predictors and reinforcement learners
that independently learn policies for reducing the prediction
errors. A RL module is selected for updating using an ε-greedy
criterion based on the cumulative prediction progress of the
previous episode. Figure 12(a) shows the Q-table and state-
value table for both RL agents at the end of the 30th episode.
It can be seen that the Q-table and state-value table for the
bottle have a maximum value at state 9, while for the cup,
they have a maximum value at state 3. These two different
policies now serve as two different skills for the iCub robot.
Figure 12(b) shows the intrinsic reward received by both RL
agents over several episodes.

Fig. 12. (a) Policies developed for each of the objects at the end of
30th episode. (b) Intrinsic curiosity reward plot for both RL agents. (x-axis
represents number of episodes)

IV. CONCLUSION

Our novel unsupervised learning method AutoIncSFA de-
rives meaningful low-dimensional spatio-temporal representa-
tions of the environment, given high-dimensional raw pixel
visual input streams. Applying AutoIncSFA to video camera
inputs of the iCub humanoid robot, we showed its robustness
to distractions by noisy or less significant event sequences.
AutoIncSFA generalizes well on unseen data. It can also feed
a subsequent reinforcement learner with compact but infor-
mative inputs, greatly helping curious, exploring RL robots to
build novel behaviors from scratch, motivating them to create
novel, previously unknown AutoIncSFA-encodable invariances
or regularities in their input stream. A preliminary proof-
of-concept experiment for developmental learning showed
how to use AutoIncSFA for building a meaningful action
repertoire without any external reward signal. Although we
used traditional RL on top of AutoIncSFA, we expect the
latter to be even more useful for more complex, modular RL
approaches [29]–[33]. We also look forward to carrying out
experiments with a moving observer in the immediate future.
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