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Abstract—To autonomously learn behaviors in complex en-
vironments, vision-based agents need to develop useful sen-
sory abstractions from high-dimensional video. We propose a
modular, curiosity-driven learning system that autonomously
learns multiple abstract representations. The policy to build
the library of abstractions is adapted through reinforcement
learning, and the corresponding abstractions are learned through
incremental slow-feature analysis (IncSFA). IncSFA learns each
abstraction based on how the inputs change over time, directly
from unprocessed visual data. Modularity is induced via a gating
system, which also prevents abstraction duplication. The system
is driven by a curiosity signal that is based on the learnability
of the inputs by the current adaptive module. After the learning
completes, the result is multiple slow-feature modules serving
as distinct behavior-specific abstractions. Experiments with a
simulated iCub humanoid robot show how the proposed method
effectively learns a set of abstractions from raw un-preprocessed
video, to our knowledge the first curious learning agent to
demonstrate this ability.

I. INTRODUCTION

One of the challenging problems faced by an autonomous
agent in a complex environment is how to derive useful behav-
iors in the presence of an abundance of sensory information.
Typical high-dimensional input streams would need to be
represented by a set of compact but discriminative feature
abstractions mapping complex observation sequences to a low-
dimensional space. These lower-dimensional representations
will then enable a subsequent reinforcement learner to gener-
ate intelligent behaviors. Recently, an unsupervised learning
technique called incremental slow feature analysis (IncSFA)
[6] was introduced that learns useful sensory abstractions from
high-dimensional video. Slow-features depend on how the
inputs change over time [18] and can be used to learn behavior-
specific abstractions [5], [11]. Learning distinct behaviors
requires learning different abstractions. How can multiple
abstractions be learned in the absence of a teacher? We
propose here a novel curiosity-driven reinforcement learning
framework called the Curiosity-Driven Modular Incremental
Slow Feature Analysis (Curious Dr. MISFA), which facilitates
autonomous learning of multiple slow-feature modules that
serve as distinct behavior-specific abstractions.

The Options framework [17] formalized planning over
temporally extended courses of actions (temporal abstrac-
tions) via the semi-Markov decision process. Each option is
applicable over part of the world, has its own subgoal(s),

and has its own policy. Each option has a set of initiation
states (from which the option can be started), a policy for
action selection, and a termination probability upon each
state. Konidaris et al. in [7], [8] show how each option
might be assigned with an abstraction from a library of
many sensori-motor abstractions, potentially simplifying the
learning problem. However, these abstractions have typically
been hand-designed. In our model, we modify the option
definition to include feature-abstraction as a part of it and
explore ways to learn these feature-abstractions of several
options using temporal-difference methods. RL on abstraction-
based options have been applied to challenging domains such
as those of humanoid robotics [9], in which learning was
assisted by human-demonstration. These rely on teacher-given
demonstrations, explicit task-descriptions by humans and ex-
ternally defined goals for guidance. How a compact set of
useful abstractions might be learned from exploration in such
challenging domains remains an open problem. Curious Dr.
MISFA will build a library of abstractions for such complex
domains without external guidance.

In this paper, we focus purely on learning features from the
environment without any external motivation. In this case, the
agent needs to be self-motivated, i.e., curious. The Formal The-
ory of Fun and Creativity [15] mathematically formalizes driv-
ing forces behind all kinds of curious and creative behavior.
A creative agent needs two learning components: a reinforce-
ment learner and an adaptive encoder/predictor/compressor of
the agent’s growing history of perceptions and actions. The
learning progress of the encoder becomes an intrinsic reward
for the reinforcement learner [14].

The learning module in Curious Dr. MISFA has a output
estimator, which is adaptively improving a model of feature
responses. The agent is rewarded whenever the error in the
model reduces. Once some level of accuracy is reached, the
module is frozen and added to the abstraction library. In
this way, without any prior knowledge of the environment,
Curious Dr. MISFA curiously and incrementally builds mod-
ules encoding all the SFA-encodable regularities in the world.
Once learned, the various slow-feature abstractions facilitate
learning of several potentially intelligent behaviors.

II. SLOW FEATURE ANALYSIS

Our feature learning method is incremental SFA. Slow
feature analysis [18] is an unsupervised learning technique



2

that extracts features from an input stream with the objective
of maintaining an informative but slowly-changing feature
response over time. SFA is concerned with the following
optimization problem:

Given an I-dimensional input signal x(t) =
[x1(t), ..., xI(t)]T , find a set of J instantaneous real-valued
functions g(x) = [g1(x), ..., gJ(x)]T , which together generate
a J-dimensional output signal y(t) = [y1(t), ..., yJ(t)]T with
yj(t) := gj(x(t)), such that for each j ∈ {1, ..., J}

∆j := ∆(yj) := 〈ẏ2
j 〉 is minimal− (1)

under the constraints

〈yj〉 = 0 (zero mean), (2)
〈y2

j 〉 = 1 (unit variance), (3)
∀i < j : 〈yiyj〉 = 0 (decorrelation and order), (4)

with 〈·〉 and ẏ indicating temporal averaging and the derivative
of y, respectively.

The goal is to find instantaneous functions gj generating
different output signals that are as slowly varying as possible.
The decorrelation constraint (4) ensures that different functions
gj do not code for the same features. The other constraints (2)
and (3) avoid trivial constant output solutions.

Slow features are useful for RL. SFs approximate proto-
value functions [12], [16] from sampled observations of a
Markov Decision Process (MDP). They are approximations
of the low-order eigenvectors of the graph Laplacian matrix
representing the MDP. The approximate nature depends on
the quality of the observation space. Theoretical analysis
shows that just a few of these features can capture the global
characteristics of some Markovian processes [2], [3].

SFA operates on the covariance of observation derivatives,
so it scales with the size of the observation vector instead of
the number of states. SFA is originally realized as a batch
method, requiring all data to be collected before processing.
The solution complexity is cubic in the input dimension I .
Incremental SFA (IncSFA) [6], however, has linear update
complexity, and can adapt the features to new observations,
achieving the slow-feature objective robustly in open-ended
learning environments. Since Curious Dr. MISFA explores the
world in an open-ended fashion, we use IncSFA instead of the
batch method.

III. CURIOUS DR. MISFA
A. Architecture

Curious Dr. MISFA has a high-level architecture similar to
the one introduced by Barto et al. [1]. The environment is
divided into an internal environment and an external environ-
ment (Figure 1). The former contains an RL agent and an
intrinsic-motivation block that generates internal rewards to
the agent. The shaded box represents Curious Dr. MISFA. The
external environment has a finite set of primitive states S. At
each time step the agent perceives the state s ∈ S by carrying
out an action a ∈ A and makes an observation (potentially
high-dimensional vector) x ∈ RI .

The internal environment has a finite set of temporally-
extended courses of actions O = {O1, O2, ...On}, where
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Actions (A  ) 

Internal
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o
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Fig. 1. Curious Dr. MISFA System Architecture. See text for details.

Oi is similar to an option [17]. Each option here is a five-
tuple: O = 〈I, β, πx,Φ, πy〉. I : S → [0, 1] is the initiation
set indicator function, which is 1 in states where the option
applies and 0 elsewhere. β is the option termination condition
(which will determine when and where the option ends).
πx : S+×A → [0, 1] is a hard-coded exploration policy, such
as a random walk within the state space where the option
is applicable (S+ ⊆ S). The exploration policy is used to
collect input observations (x). Φ is the option’s abstraction set,
initially unknown, these are learned features which map the
I-dimensional observation vector to a J-dimensional encoded
observation: Φ : x 7→ y, where J << I . And finally,
πy : S+ × A → [0, 1] is an exploitation policy, meant for
improving via RL while using the abstraction output y as an
input. We will not deal with improving the exploitation policy
in this paper, but we wish to lay the groundwork for future
work, which will do so.

When we say an option Oi executes, we mean it starts in the
current state s ∈ Ii and its exploration policy πx

i takes control
until it hits a termination condition βi. However, a termination
condition can only occur in states where at least one option is
applicable.

The goal of Curious Dr. MISFA is to build the abstraction
library,

ΦL = {ΦL1 ,ΦL2 , ...,ΦL≤n}, (5)

where each ΦLi refers to a learned abstraction in the order that
the abstraction from an “easily learnable” option is learned
first.

Unlike the options framework presented in [17], we refer
to each option as an internal-state (Oi ∈ O) that the agent
observes in the internal environment (see Figure 1). When
the agent shifts to one of the internal-states, it executes
the corresponding option. Note that when an option Oi is
executing, this implies that the agent’s current internal-state
is Oi.

When the execution of the current option terminates, the
agent can take two internal-actions, Ao = {stay, switch}.
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Fig. 2. The agent has an internal-state space including all n options, and
two actions: stay (in the current option) or switch stochastically to another. It
selects an internal-action (stay or switch) whenever an option terminates.

The internal-action stay makes the agent to stay in the same
internal-state and executes the corresponding option again.
While switch randomly (uniform) shifts the agent’s internal
state to one of the other internal-states (stochastic switching)1.

Figure 2 shows the state-diagram of the internal environ-
ment. The objective of the RL agent is to find a policy:
µ : O × Ao → [0, 1] that selects which option to execute
over time to build the abstraction library ΦL.

At any time the input stream x(t),x(t+ 1), ... is a function
of one of the n input stream-generating options O1, .., On.
Whichever option is currently executing runs its exploration
policy until it terminates, and this exploration policy generates
a stream of observation vectors. While some options may
lead to random incompressible observation sequences, others
observation streams may contain learnable regularities.

Figure 3 shows the inner details of the intrinsic motivation
block. It has an adaptive module and a library of k (equal to
0 at t=0) learned frozen modules. Each module is a combi-
nation of an IncSFA module and its estimated output model
(estimator).

To learn each abstraction, a single training module (see
Figure 3) continuously updates on the stream of observations.
The decrease of estimation error of the learning module −ε̇est

1Note that the goal of Curious Dr. MISFA is to learn to build abstractions
reflecting the given input streams, not from combining them, which would lead
to a combinatorial explosion of observation sequences. Stochastic switching
becomes important to prevent IncSFA from picking up regularities generated
by a deterministic source-switching policy (n-armed bandit).

is an intrinsic reward which is accumulated until the current
option terminates. Upon termination, the cumulative reward is
then given to the agent, which reinforces its future internal-
actions.

B. Abstraction Updating

IncSFA: There is always only a single adaptive IncSFA (see
Figure 3) continually updated on each sample. To summarize
briefly (details: [6]):

The adaptive module’s IncSFA incrementally updates exist-
ing slow-feature estimates after each derivative measurement:
ẋ(t) = x(t)−x(t−1), where x(t) is the high-dimensional in-
put observation (such as an image) at time t and the derivative
is computed via backward-difference approximation.

The update for each slow-feature vector wi from 1 to J ,
where J is the number of slow-features used is

wi ← (1− ηSFA)wi−

ηSFA

(ẋ ·wi) ẋ + γ

i−1∑
j

(wj ·wi)wj

 (6)

where ηSFA is a learning rate. This update is based on
anti-Hebbian learning with an additional Gram-Schmidt term
inside the summation that enforces different features to be
orthogonal. wj are the “lower-order” slow-features, and γ is
larger than the first eigenvalue of ẋ. We compute the most
significant PC of ẋ with an incremental PCA technique to get
this scalar. After updating, a feature is normalized for stability.
The feature output does not use the derivative signal, but is
an instantaneous function:

y(t) = x(t)T w(t) (7)

In practice, we found it beneficial for images to first pass x
through a simultaneously learning spatial image compressor,
such as an neural net autoencoder [5]. (see Section IV-B for
more details)
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Note that this decrease is the reward used by the agent to choose between the ’stay’ and ’switch’ actions.

Estimator: The agent’s adaptive module additionally has an
estimator that maintains estimates of the current slow feature
outputs. If the feature outputs become stable, the error of the
estimator decreases. This decrease motivates the agent to focus
on the options where it makes the most progress.

The slow feature outputs can change quite rapidly during
the training phase. The estimator therefore has to be able to
change its estimates to this initially non-stationary input, but
still build up a good robust estimate when the input becomes
stable. To this end, we use a kernelized agglomerative cluster-
ing algorithm called the Robust Online Clustering algorithm
(ROC) [19], [4]. The method is similar to a kernelized k-
means algorithm, but by using a merging approach, ROC can
quickly adjust to non-stationary input distributions by directly
adding a new cluster for the newest input sample. k-means
in contrast would slowly have to move an existing cluster to
a new point. We further enhanced its performance to non-
stationary distributions by adding a forgetting parameter.

The estimator uses M instances (nodes) of the ROC al-
gorithm, each containing and updating their own clusters.
Each node is assigned to a part of the observation space by
a binning function, mapping the observations to an integer
b : S → w, 0 ≤ w < M,w ∈ N. Then the current slow
feature output y becomes represented by the ROC instance
corresponding to w.

C. Estimation error and Intrinsic Reward

Each estimator node j has an associated error εjest. These
errors are initialized to 0 and then updated whenever the node
is activated by:

εjest(t) = min
w
||y(t)− vw|| (8)

where y(t) is the slow-feature output vector, vw is the estimate
of the wth cluster of the activated node and ||.|| represents L2

norm. The total estimation error is calculated as the sum of
stored errors of the nodes:

εest(t) =
M∑

j=1

εjest(t) (9)

The agent receives rewards proportional to the derivative
of the total estimation error, which motivates it to continue
executing an option that is yielding a meaningful learnable
abstraction. The agent’s reward function is computed at every
iteration from the curiosity rewards (ε̇est) as follows:

Ro,o′

a := (1− η) Ro,o′

a + η

t+T∑
t

−ε̇est(t) (10)

where 0 < η < 1 is a discount factor, T is the duration of the
current option until its termination, (o, o′) ∈ {O1, ..., On} and
a ∈ {stay, switch}.

Figure 4 shows an example progress of an estimator (with
20 ROC nodes mapped to say 20 states) over time. Figure
4(a) shows the estimation error of each node that is mapped
to a part of the observation space. As the adaptive IncSFA
features stabilize, the estimation error at each node decreases
over time. Figure 4(b) shows the plot of total estimation error
with time. The decrease in this error is used for computing
the intrinsic reward.

D. RL Policy Generation

The transition-probability model P of the internal environ-
ment is similar to a complete graph and is given by:

P stay
ij =

{
1, if i = j

0, if i 6= j
(11)

P switch
ij =

{
0, if i = j

1
N−1 , if i 6= j

(12)

∀i, j ∈ [1, ..., N ]. Using the current updated model of the
reward function R and the internal-state transition-probability
model P , we use model-based Least Squares Policy Itera-
tion [10] to generate the agent’s policy (µ : O×Ao → [0, 1])
for the next iteration. The agent uses decaying ε-greedy
strategy over the agent’s policy to carry out an internal-action
(stay or switch) for the next iteration.
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E. Module Freezing and New Module Creation

Once the adaptive (training) module’s estimation error
gets lower than a threshold, the agent freezes and saves
the IncSFA/estimator module, resets the ε-greedy value and
creates/starts training a new module.

F. Abstraction Assignment

The already trained (frozen) modules represent our learned
library of abstractions ΦL (Eq. 5). If a trained module’s
estimation error within an option is below a threshold, that
option is assigned that module’s abstraction and the adaptive
training module will be prevented from learning via a “gating
signal” (see Figure 3). There will no intrinsic reward in
this case. Hence the training module will encode only data
from input streams that were not encoded earlier. Input badly
encoded by all other trained modules serve to train the adaptive
module.

IV. EXPERIMENTS AND RESULTS

A. Oscillatory Audio Signals

To illuminate the system’s learning behavior over time, we
conduct three tests in a toy environment. There are 500 states
in the external environment (1 ≤ s ≤ 500) and either three or
four options (internal states—e.g., O ∈ {O1, O2, O3}). Each
option’s exploration policy simply advances the state to the
next (and from state 500 to state 1). Termination probabilities
are 1 at every 50th state, and 0.0 elsewhere, hence the agent
has to decide on an internal-action (stay or switch) every 50
time steps.

Test 1: Three Encodable Signals. In the first test, the audio
streams generated by each option O are encodable by IncSFA.

if O = O1 :
{
x1(t) = sin(t) + cos(11 t)2

x2(t) = cos(11 t) (13)

if O = O2 :
{
x1(t) = sin(11 t)
x2(t) = cos(11 t)2 + sin(2 t) (14)

if O = O3 :
{
x1(t) = sin(11 t)
x2(t) = cos(11 t)2 + sin(0.5 t) (15)

where t is s mapped to [0, 2π]. All signals contain both quickly
and slowly-varying components. The slowest feature in the
signal O1(t) is y(t) = x1(t)−x2(t)2 = sin(t) [18]. Similarly,
the slowest features in the signals O2(t) and O3(t) are y(t) =
x1(t)2 + x2(t) = 1 + sin(2 t) and y(t) = x1(t)2 + x2(t) =
1 + sin(0.5 t), respectively.

Test 2: Two Encodable and one Random Signals. In the
second experiment, we have two stationary signals from the
first experiment and one random signal (uniform noise).

Test 3: One Encodable and Three Random Signals. Three
options produce random signals, only one generates a signal
with learnable regularity.

Experiments. In all cases Curious Dr. MISFA starts with a
single adaptive abstraction module (i.e. k=0 frozen modules)
and random RL policy µ (see Sec. III-D). When selected each
option execute its exploration policy. The agent explores using
an epsilon-greedy, on-policy strategy until it stops receiving
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intrinsic rewards, which indicates that the abstraction library
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is complete.
Results are shown in Figs. 5. Refer parts (a)-(d) for Test

1 results. Part (a) shows signals generated in each option.
Part (b) shows the evolution of estimation progress for each
module. Since signal complexities are similar, the agent has no
preference for any signal source, and the modules are learned
in an arbitrary order. We see that when the estimation error of
module-1 goes close to zero, the module is frozen and a new
module-2 is now created. Part (c) shows the RL policy (µ) over
algorithm iterations. Values (0, 1) in the plot correspond to the
actions (stay, switch) respectively. The policy (µ) converges
very quickly and is stable until the corresponding adaptive
module has been trained. It then automatically shifts to a new
policy, where the observations are made from the un-encoded
input streams. Part (d) plots the modeled reward function
R of the RL agent for the stay action. During training, the
reward of a state with a policy equal to ’stay’, is higher,
allowing the agent to train the estimator until it reaches a
low estimation error. The ε-greedy exploration (see Sec. III-D)
over the current policy allows the estimator to make continual
progress, preventing the reward from dropping quickly before
the estimation error reaches a low value. This is also evident
from part (b), where the estimation error is not smooth and the
spikes are a result of switching to other options. The upward
slope of the spike (negative reward) is reflected in R for the
option the agent is switched to. And the positive reward, due
to the downward slope, is added to R when the agent switches
back to the earlier option where it was making progress.

Refer to parts (e)-(h) of Figure 5 for Test 2 results. Part (e)
shows signals generated in each option, where O3 generates
a random signal. Part (f) plots estimation error of created
modules over time: The agent first learns modules for the
stationary signals because here its IncSFA/estimator can make

progress most quickly. This is also reflected by the Learned RL
policy (part (g)) and the higher reward for modules 1 and 2 in
part (h). Only after signals with quickly learnable regularities
have been learned, the system tries to learn the random signal
stream, but the corresponding module does not make much
progress beyond learning the signal mean.

Refer to parts (i)-(l) of Figure 5 for Test 3 results. This
result shows the agent’s ability to pick out a learnable signal
from a larger number of random signal input streams as shown
in Part (i). Part (j) shows that the system generates only
two modules, one for the regular signal, one for the noisy
one. Initially, the agent makes similar progress with both the
internal actions (switch or stay) for the noisy signals. This
increases the probability for the agent to switch to the option
that produces the regular signal. There the agent learns to
select the stay action until the estimator has learned to estimate
the IncSFA outcome as seen in parts (k) and (l).

Tests 2 and 3 also demonstrate that the system focuses
on those parts of the environment where there are learnable
regularities, as opposed to parts of the environment where its
estimation error does not decrease.

B. Raw Video Streams in the iCub simulator

Environment. Here we present the results of an experiment
conducted in the iCub dynamics (ODE-based) simulator [13].
The robot is placed at a table with two objects (Figure 6(a)),
each in reach of one of its two arms. The red object (left) sits
on a small nub on the table; the blue object (right) is placed
directly on the table.

There are two options O1 and O2 and therefore two corre-
sponding internal states. In O1, the iCub randomly moves its
left arm along the shoulder joint. When the iCub touches the
red object, the object topples and falls sideways onto the table,



7

0 1000 2000 3000 4000 5000 6000 7000

10

20

30

40

50
Module 1

Module 2

t

Module's Estimation Error

E
rr

o
r

(a)
0 10 20 30 40 50 60 70 80 90

Module-2 State Switching
Push

Topple

S
ta

te (c)Module
Trained

0 10 20 30 40 50 60

Module-1 State Switching
Push

Topple

S
ta

te (b)
Module
Trained

t(x50)

t(x50) 

0 10 20 30 40 50 60 70
− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

1.5

teps

Object toppled

Module-1 IncSFA Output

(d)
0 20 40 60 80 100

− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

1.5

teps

Object out 
of reach

(e)

Module-2 IncSFA Output

Fig. 7. (a) Learning progress of the modules over time. Module-1 learns
to encode the ’toppled’ abstraction and Module-2 encodes the ’pushed-out-
of-reach’ abstraction. (b)-(c) Convergence plots of the two modules. (Figures
are best viewed in color)

and the option terminates. In O2, the iCub randomly moves its
right arm along the shoulder joint. When it touches the blue
object, the object slides over the table. The iCub can push the
blue object out of reach, in which case the option terminates.
After termination, the robot’s arm and the object is scripted to
reset to an initial position. In both cases, the joint angles are
discretized into 30 external states along the range of possible
angles.

In either option, the robot moves its head to keep the
object it is interacting with within its field of view. Raw
high-dimensional monochrome video streams from the iCub’s
simulated cameras, downsampled to 75×100 pixels, form the
sensory inputs to the algorithm. Figure 6(b) shows a sample
input image. We used two autoencoders similar to the ones
discussed in [5] for both eyes to compress the visual stream
into a lower-dimensional input stream—both autoencoders
have a single hidden layer with 100 hidden states. They are
trained incrementally using standard error back-propagation.
However, any other dimensionality reduction could be used,
e.g., incremental PCA.

Results. Curious Dr. MISFA initially explores both options.
If these options were to be trained individually, the result
would be a step function that denotes whether the object is
toppled or not [5] (for the right arm) or whether the object
is pushed out of reach or not (for the left arm). The slope
of the estimation error plots (see Figures 6(d) and (h)) of
the slow-feature outputs for the toppling event is lower than
the one for the push event, indicating that the topple event
is easier to encode. After several episodes, the first module
converges: object toppling is encoded via a step function. Once
this module is frozen, the corresponding region generates no
more internal rewards. The system now focuses on learning to
encode object pushing. Once both the events are Learned, the
robot has encoded all typical perceptive sequences, waiting for

Random Exploration Policy Learnt Exploitation Policy

(a) (b)

(c)

Reward

Absorbing
State

Fig. 8. (a) Random Exploration Policy used for abstraction learning. (b)
An exploitation policy Learned using the frozen abstraction for an RL task to
topple the object. (c) The optimal state action-value function for the task where
the agent receives an internal reward for the step-transition of the abstraction
output (blue dotted line) for each observation (joint angle). Transition happens
as a consequence of the object being toppled. (Figures are best viewed in
color).

additional novel changes in the environment2.
The robot autonomously learns two abstractions ((1) object

toppled, (2) object pushed), and knows which abstraction
applies in which option. This could potentially assist the
learning of more complex behaviors.

V. DISCUSSION

In the experiments presented above, Curious Dr. MISFA au-
tonomously builds abstractions that encode the agent’s interac-
tions with the environment from raw pixels in an unsupervised
manner. Once an abstraction is built, it can be used to learn
several exploitation policies (πy) representing behaviors (or
skills). Here is a basic example of learning an exploitation
policy for the toppling-event discussed in Sec. IV-B. Figure
8(a) shows the random exploration policy (πx) used by the
iCub for learning the abstraction. Figure 8(b) shows an ex-
ploitation policy Learned by using the frozen abstraction in an
episodic-RL task through Q-learning. The iCub tries to predict
the step transition in the Learned abstraction and receives
internal rewards in doing so. Figure 8(c) shows state value,
optimal action (left or right), and the abstraction output (blue
dots) for each observation (15 discrete joint angles). Task-
specific exploitation policies could be Learned more efficiently
by using multi-spectral and manifold-learning techniques [12].
We leave this for future work.

Curious Dr. MISFA can prevent abstraction duplication and
therefore permit generalization. It does not need to know
the number of useful abstractions in advance. New ones are
created once existing ones are insufficient to encode/predict
input signals well.

2A video of the experiment can be found at http://www.idsia.ch/∼kompella/
videos/curious dr misfa.mp4
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TABLE I
PARAMETERS THAT AFFECT THE WORKING OF CURIOUS DR. MISFA

Curious Dr. MISFA Paramters
Learner Parameters Significance

IncSFA/AutoIncSFA Learning Rate
(ηSFA)

A constant set for each
experiment. Determines the
performance of IncSFA. See
[6] for more details.

ROC Estimator

No. of ROC
Nodes

(M)

Equal to the total number of
observable primitive states
in S. Any other value also
works but leads to appropri-
ate quantization of the ob-
served state space.

Amnesic
Parameter

(l)

A constant set to 0.2 in the
experiments. It determines
the adaptiveness of the es-
timator.

RL (LSPI)

ε-greedy
(ε)

Exploration/exploitation
trade-off parameter.
Initialized to 0.4 in our
experiments.

Decay constant
(λ)

Decay term for ε-greedy
(0< λ < 1). ε decays every
time-step. Set to 0.995 in
our experiments.

Option termina-
tion condition

(β)

Determines the option ex-
ecution time. This param-
eter mainly affects the to-
tal experiment time. How-
ever, a very large option ex-
ecution time could result in
learning an abstraction be-
fore the option terminates.
This will disrupt the order
in which the abstractions are
Learned.

We expect our system to scale to environments with numer-
ous learnable regularities. In ongoing work we are testing it
in increasingly complex environments using tree-based search
involving the iCub simulation and the actual iCub robot.

Finally, Table I summarizes the main parameters to be
tuned and their significance on the functioning of Curious Dr.
MISFA.

VI. CONCLUSIONS

Curious Dr. MISFA is an autonomous, modular, incremental
slow-feature-based reinforcement learner driven by learning
progress. From raw camera inputs it automatically creates
a library of abstractions, driven by an internally-generated
curiosity signal that forces the system to focus on quickly
learnable parts of its environment (instead of just focusing
on parts where prediction error is high). In this sense, the
system continually searches for the easiest-to-learn but not
yet solvable task, ignoring parts of the environment that are
too difficult to learn.
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