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Abstract

Most computer and robot vision algorithms, be it for object detection, recog-
nition, or reconstruction, are designed for opaque objects. Non-opaque ob-
jects have received less attention, although various special cases have been
the subject of research efforts, especially the case of specular objects. The
main objective of this paper is to provide a research work in the case of semi-
transparent objects, i.e. objects that are transparent but also reflect light,
typically objects made of glass. They are rather omnipresent in man-made
environments (especially, windows and doors). Detection of these objects
provides important information that can be used in a robot’s navigational
strategies such as obstacle avoidance, detection of oil/water spills on the
floor, localization, etc. In order to achieve the detection of semi-transparent
objects we developed a novel approach using a collective-reward based tech-
nique on an image captured by an uncalibrated camera. Several experiments
were conducted over different scenarios to test the efficacy of the algorithm.
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1. Introduction

Every opaque object has specific features which make it visually distin-
guishable from the rest. On the other hand, an ideal transparent substance
would have no such features of its own, therefore making it visually impossi-
ble to recognize. However, several objects like glass do give us a perception
of transparency by posing a few deterministic cues such as highlights, tex-
ture distortion, intensity variation etc. to the observer and passing most of
the light through it. Roughly speaking in the context of object recognition,
transparency can be defined as an inverse-measure of the number of deter-
ministic features specific to an object. So, a semi-transparent object would
have fewer distinguishable features compared to an opaque object (Figure
1). In this paper we discuss a collective-reward based approach for detecting
such semi-transparent objects from a single image. The method is thoroughly
tested for its efficacy by a 50 image-dataset containing several scenarios of
semi-transparent objects made of glass, plastic etc.

(a) (b)

(c) (d)

Figure 1: The figures show images containing semi-transparent objects. (a) Pair of glasses.
(b) A plastic-case (c) Glass with opaque objects (d) Synthetic water drop.
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1.1. Related Work

In this section, we review some of the related research work that was
carried out in the area of transparency and its detection.

Transparency has been a subject of research in the fields of psychology,
vision and graphics. Among the earlier researchers studying the phenomenon
of transparency, gestalt psychologist Metelli has been credited for making im-
portant and influential contributions to the theory of perceptual transparency
[14]. Perceptual transparency is the phenomenon of seeing one surface behind
another. Metelli’s model of transparency was based on a rotating episcotis-
ter, i.e. a rotating disk with reflectance t and an open sector of relative area
α (Figure 2). When rotated in front of a bi-partite background whose two
halves have different reflectance-values a and b, it would lead to a percept of
transparent layer with a reflectance p and q overlying the opaque background.

Figure 2: The figures illustrate Metelli’s model of transparency using a rotating episcotis-
ter.

The color mixing in the region where the episcotister rotates over the
background is given by Talbot’s law:

p = αa+ (1− α)t (1)

q = αb+ (1− α)t (2)

Two “qualitative constraints” were proposed for predicting the percept of
transparency and they are:

• Polarity constraint: sign(p− q) = sign(a− b).

• Magnitude constraint: |p− q| ≤ |a− b|.

The magnitude constraint was later found out by Singh and Anderson [15]
to be inadequate in predicting the percept of transparency. The locus of
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Figure 3: The figures(a)-(c) illustrate different types of X-junction. (a) Non-reversing X-
junction (b) Single-reversing X-junction (c) Double-reversing X-junction. The conditions
on luminance values shown in (d) are used to categorize the X-junction as one among the
three types.

transition between transparency and non-transparency was approximated
instead by a constraint based on Michelson contrast (i.e. p−q

p+q
≤ a−b

a+b
).

Adelson and Anandan [1] used a linear model for the intensity of a trans-
parent surface to achieve relationships between the X junctions at the bound-
ary of transparent objects. These relationships categorize the X junctions
leading to interpretations that support or oppose transparency. Figure 3 il-
lustrates several types of X junctions. Let p, q, r, s be the luminance values in
the four regions surrounding the X junction, as indicated in Figure 3(d). The
vertical edge retains the same sign in both halves of the X junction if p < q
and r < s. Similarly, if p < r and q < s, the horizontal edge retains the same
sign in both halves of the X junction. This is called a “non-reversing” junc-
tion because both edges retain their sign (Figure 3(a)). Figure 3(b) shows
another X junction where the vertical edge changes sign and the horizontal
edge retains its sign. This is called a “single-reversing” junction. And when
both the edges change their sign then it is called a “double-reversing” junc-
tion. Non-reversing and single-reversing junctions support transparency and
a double-reversing junction does not support transparency.

Transparency and its related problems have received relatively less at-
tention in the computer vision research. Singh and Huang [16] discussed
about the separation of transparent overlays from the background surfaces
by making use of polarities of X junctions along the boundaries of objects.
Transparent overlays are generally formed because of the presence of a trans-
parent surface in front of an opaque object. Schechner et al. [13] have used
the concept of depth from focus along with reconstruction to separate such
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overlays. Wexler et al. [17] have developed an approach for modeling trans-
parent objects without the need of any specialized calibration by making use
of multiple images of the same object over the same background with a rela-
tive motion between them. Ben-Ezra and Nayar [3] developed a model-based
algorithm to recover the shape and pose of a transparent object in the scene
from motion. They made use of the fact that changing the viewpoint changes
the apparent background visible within the confines of a transparent object.
Although, this requires for the background to be far away behind the trans-
parent object. Hata et al. [5] have proposed another approach in extracting
the shape of transparent objects. A comparison was performed over a real
and a simulated image by tracing a slit light-line along an ordinary board
on which the transparent object was placed. The error evaluation was then
used to modify the model by making use of a genetic algorithm until the
error falls below a threshold.

The main focus of the computer vision community remained on the prob-
lems concerning the detection of overlays and the reconstruction of the 3D
shape structure of transparent surfaces. Relatively little work was carried out
in the actual automatic detection of transparent objects in a scene. McHenry
and Forsyth [10] used the edge information determined by a Canny edge de-
tector to capture cues relating to transparent objects across their boundaries.
These edges were combined using an active contour method to identify a sin-
gle glass region. This method was later extended by McHenry and Ponce [9]
with a region-based approach along with the edge information to classify
regions as transparent or not. They proposed two measures called the dis-
crepancy measure and the affinity measure. The affinity measure provides
an indication whether the regions belong to the same material and the dis-
crepancy measure was used to indicate how close a region looks like a glass-
covered region of the other. A region-based segmented image was used as an
input to the algorithm. One of the issues reported by the authors was that
an initial segmentation may merge some parts of the transparent object with
parts of the background and this cannot be recovered later in the process.
Transparent objects with low refractive indices may face this issue. As the
algorithm is dependent on the edge cues for connecting regions, it might lead
to problems if the object has weak edges or if the background edges intersect
the glass object. This is possible with lower refractive transparent objects like
a plastic sheet. It has been suggested that an over-segmented image would
be preferred as an input to the system. An over-segmented image with a
noisy background containing lots of edges might make it computationally
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(a) (b)

Figure 4: (a) The figure shows a sample image with a semi-transparent object. (b) The
final result of the algorithm.

intensive because the discrepancy measure is calculated for region samples
about edge snippets. But on the other hand considering fewer snippets could
be erroneous in a low resolution image.

In this paper, we present an algorithm for the automatic detection of semi-
transparent objects using the information available from a single image. In
this regard we propose a method called the collective-reward based approach
to achieve the detection and localization of the object’s position in an image.
The underlying principle is the fact that the pixels corresponding to a semi-
transparent object have features which are similar to the surrounding pixels
due to refraction and reflection of light on the object’s surface. Figure 4(a)
shows an example image which when fed to the algorithm has the result as
shown in the Figure 4(b). The collective- reward based approach can be
extended to fit onto a robotic system to detect glass doors and transparent
obstacles present in the scene for a better mapping and navigation. It may
also be used to detect and avoid water or oil spills on the floor.

The paper is organized as follows. In Section 2, we discuss the feature-cues
used in the algorithm that are related to the transparent objects. Section
3 discusses details about how the feature-cues are quantified either by of-
fline trained or hand-set reward functions. The tuning parameters used are
then fixed for generating experimental results. The collective-reward based
approach is presented in-detail in the Section 4. Section 5 discusses about
the results of the experiments conducted over several sets of images captured
with a web cam and from the Internet. Finally, we conclude the paper by
providing some insights on the various applications of the algorithm and also
discuss some of our future work in Section 6.
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2. Feature-Cues

This section presents a description of the features-cues used in our algo-
rithm that are usually present with semi-transparent objects. The following
cues are quantified via feature-reward functions, details of which are later
discussed in Section 3.

2.1. Highlights and Caustics

(a) (b) (c)

Figure 5: (a) The figure shows the presence of caustics on a semi-transparent object (glass).
(b) The figure shows the presence of highlights on a semi-transparent object (plastic case),
and the figure (c) shows the segmented highlight pixels.

Highlights are strongly illuminated regions in the image formed due to
the specular nature of a surface. Transparent objects like glass are usu-
ally highly specular and refractive, therefore the presence of highlights and
caustics increases the probability of a possible transparent material around
(Figure 5(a)). Several methods exist in the literature discussing the detection
of highlights [6]. We have used HSV color space [4] and a method similar
to the one discussed in [2]. Figure 5(b) shows a sample image of a trans-
parent object with highlights. The pixels corresponding to the highlights are
segmented out as shown in the Figure 5(c).

2.2. Color

A near transparent object would produce an almost negligible distortion
to the color of the background. On the other hand, semi-transparent ob-
jects like glass, plastic, etc. generally have impurities and due to specular
reflections, the background color is slightly distorted (Figure 6(a)). We made
use of the Y CrCb color model [4] as the distortion was relatively higher in
Cr (Figure 6(b)) and Cb (Figure 6(c)) color channels in comparison to the
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(a) (b) (c)

(d) (e)

Figure 6: (a) The figure shows an image containing a semi-transparent object. (b) Its cor-
responding Cr color channel and (c) Cb color channel image. (d) Offline trained function
for Cr color channel and (e) Offline trained function for Cb color channel (see text)

Hue channel of the HSV color model. Figures 6(d)-(e) show offline trained
functions for both the color (Cr and Cb) components. They relate color
differences between a point and a close-by-point on the background to the
probability that the first point belongs to a semi-transparent object. The
distortion can be seen in the graphs where the reward (discussed in the later
sections) or the probability is higher for the color differences that are neither
large nor very close to zero. This corresponds to the intuition that semi-
transparent objects slightly alter the color of the background behind them.
Details about the training are discussed in the Section 3.

2.3. Saturation

Saturation serves as another valuable cue in detecting transparent ob-
jects. Transparent objects have a slight blurring effect on the background.
The pixels belonging to these blurred regions tend to have less vivid colors
than pixels corresponding to the unblurred region [7]. Therefore these pixels
have relatively lower saturation values (Figure 7). This can be observed
in the offline trained function as shown in the Figure 7(c). The probabil-
ity (reward) is higher for smaller positive differences between the points on
transparent objects and surroundings.

8



(a) (b) (c)

Figure 7: (a) The figure shows an image containing a semi-transparent object and (b)
its corresponding saturation channel image. Semi-transparent objects tend to lower the
saturation values. (c) Offline trained function for saturation channel.

2.4. Intensity

(a) (b)

Figure 8: (a) The figure shows a gray scale image of a semi-transparent object present on
a textured floor. There is a slight reduction in the contrast of the texture appearing on
the object. (b) The figure shows an illustration of how the cross-correlation measure is
determined in an image containing a transparent object.

Intensity plays a major role for backgrounds with texture. We made
use of Michelson’s contrast constraint, which uses the information of the
maximum and the minimum intensities in the neighborhood (Eqn (3)), as
it has been shown by Singh and Anderson [14] that transparency lowers its
value:

C =
Imax − Imin

Imax + Imin

(3)

Figure 8(a) shows a gray scale image of a semi-transparent object. We can
observe the slight reduction in the difference in the intensities within a small
neighborhood of the texture appearing on the semi-transparent object.
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2.5. Cross-Correlation Measure

Cross-correlation is a measure of how well two signals match with each
other. All the feature cues discussed till now were used via pixel comparisons,
but the distortion produced by a semi-transparent object can also be captured
by a region analysis. A small window used as a template was slided over a
small rectangular region as shown in the Figure 8(b). The normalized cross-
correlation score was calculated at each point. The maximum and minimum
of the result were found. These values were used as another cue to determine
the probability of the presence of a transparent object. Normalized cross-
correlation values (maximum and minimum) are higher and the difference
between them is smaller for the points that belong to similar regions. As
glass produces a slight distortion effect on the background, the values are
relatively lower and the difference between the maximum and minimum is
slightly larger. On the other hand two non-similar patches report for even
lower values for both the maximum and the minimum. In order to reduce
the effect of noise and improve the result, Y CrCb color space channels of the
image were fed as an input.

3. Feature Reward Functions

(a) (b)

Figure 9: (a) The figure illustrates the contribution of features via refraction and specular
reflection. The figures (b) shows a sample image illustrating the correspondences between
a point inside and outside the semi-transparent object.

Semi-transparent objects typically contain the distorted features of what
lies behind the object [11]. However we know that objects like glass, plas-
tic, etc. not only transmit light but also reflect the light coming from the
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surrounding objects, typically from the foreground. Therefore, the pixels cor-
responding to the semi-transparent objects have features similar to the pixels
corresponding to the background in addition to those of the foreground. Fig-
ure 9(a) illustrates the transmitted and reflected light coming from an object
in the background and the foreground respectively. Since from a single image
we do not have access to the actual features of the regions behind the semi-
transparent object, we therefore use the surrounding pixels to judge whether
a pixel belongs to a semi-transparent object, an opaque object or a point
of the background. Figure 9(b) shows a sample image with correspondences
drawn between points inside and outside the semi-transparent object.

Feature reward functions are probability density functions of the semi-
transparent points for a given feature distortion value. Feature distortion
is used because all the feature cues, discussed in the Section 2, are based
on the distortion produced by the semi-transparent objects over the back-
ground. The feature distortion is either calculated as a difference d in the
feature-values or a difference-measure in other attributes of the points belong-
ing to the semi-transparent object and their counterpart background points.
Therefore, the reward functions emphasize the difference between the semi-
transparent object vs background over background vs background or opaque
vs background regions.

This section discusses about the feature reward functions used and their
construction details. An offline training was carried out to construct re-
ward functions for the following feature-cues: Cr,Cb and saturation. As
we are not aware of any definite form for these feature-cues, we constructed
the functions from the population density of the points in the sample space.
While, for the remaining features such as intensity, cross− correlation and
highlights, we used hand-set models for their reward functions. These are
discussed later in this section.
Offline-trained feature reward functions: To construct reward-functions
for features f belonging to (Cr,Cb and saturation), we calculated the popu-
lation of points belonging to the semi-transparent objects from a sample-set
for a given feature difference d. So, the reward function Rw is given by

Rw(d) =

(
ntr
d

ntr
d + nbg

d

)
, d ∈ (0, G) (4)

where, ntr
d and nbg

d are the number of points belonging to the semi-transparent
object and background respectively for a given feature difference d. The
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sample-set is equal to the sum of ntr
d and nbg

d . The interval (0, G) is the
range-interval of the difference d for a given feature f .

(a) (b)

Figure 10: (a) The figure shows an example of how the rectangular samples were collected
for offline training of the feature cues. (b) The figure shows an example of how the negative
training was carried out. ∼tr indicates a negative sample set.

To construct the sample set, we collected points from two arbitrarily se-
lected rectangular regions one each belonging to the semi-transparent object
(Ttr) and the background (Tbg) (Figure 10(a)). The sample set is the union
of both the regions, that is, Ttr ∪ Tbg. Separate regions are selected only for

the sake of convenience. The quantities ntr
d and nbg

d in (4) can be found from
the histograms of the feature-difference values for the points belonging to the
semi-transparent object and the background respectively. To construct such
histograms, we selected another similar region (Td) from the similar back-
ground (Figure 10(a)). We compute the feature differences between each
point in the sample set (semi-transparent object and background) and the
points in the region (Td) (similar background). Therefore, for an interior
point pi ∈ (Ttr ∪ Tbg) and an exterior point pe ∈ Td, we have the following
histograms

H tr,pi
d = {nd | d = |f(pi)− f(pe)|, pi ∈ Ttr,∀pe ∈ Td} (5)

Hbg,pi
d = {nd | d = |f(pi)− f(pe)|, pi ∈ Tbg,∀pe ∈ Td} (6)

These histograms are averaged over all the points pi in the sample set to get
a better representative of individual histograms. Therefore, we have

H tr
d =

1

ℵ(Ttr)

∑
∀pi∈Ttr

H tr,pi
d (7)
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Hbg
d =

1

ℵ(Tbg)

∑
∀pi∈Tbg

Hbg,pi
d (8)

where, ℵ(x) denotes the cardinality of the set x. Substituting (7) and (8) in
(4), we get,

Rw(d) =

(
H tr(d)

H tr(d) +Hbg(d)

)
, d ∈ (0, G) (9)

The reward function from (9) is updated and averaged over several pos-
itive sample-sets of different semi-transparent objects for each feature f ∈
{Cr,Cb and saturation} and is denoted by (Rw+

f ). A positive sample set
is defined as a set that contains at least a few points belonging to a semi-
transparent object. While a negative sample set is defined as a set that
does not contain points of semi-transparent objects. The training was also
done with negative samples by considering regions taken from distinguishable
opaque objects giving a negative reward function (−Rw−f ) (Figure 10(b)). We
used a total of 30 sample sets from different images to carry out the com-
plete training. The final reward function used for prediction for each feature
f ∈ {Cr,Cb and saturation} is given by (10).

Rwf (d) =
Rw+

f1(d) +Rw+
f2(d) + ...−Rw−fk(d)− ...−Rw−fN(d)

N
, d ∈ (0, G)

(10)
Color : We made use of the Y CrCb color model to encode the color

information. This is because the luma (Y ) component can be separated
out making Cr and Cb components robustly indicate the color attribute
invariant to intensity. The absolute difference between the median of a 3x3
neighborhood centered at two points is used as an argument that is passed
to the reward function (10). Rewards for each color component Cr and Cb
are found from the individual reward functions and the product of both the
rewards is reported. Figures 11(c) and 11(d) show the reward functions for
Cr and Cb features respectively.

Saturation: The above training was carried out for the saturation channel
with a slight modification, where a positive feature difference d = |f(pi) −
f(pe)| H[f(pe)−f(pi)] was used instead in (5) and (6). Where, H[n] denotes
a Heaviside step function. This was done in order to account for the fact
that saturation values of semi-transparent objects are lower compared to
the background. The saturation reward function (see Figure 11(b)) is found
from (10) for a feature-difference d = (Sat(pe)− Sat(pi)).
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(a) (b)

(c) (d)

Figure 11: The figures show graphs of (a) Highlights reward function (b) Saturation-reward
function (c) Cb-reward function and (d) Cr-reward function.

Hand-set feature reward functions: While the reward functions for
the features Cr,Cb and saturation were trained using the offline training
method, a hand-set model is used for the features highlights, intensity and
cross− correlation.

Highlights and Caustics : This is a hand-set reward function Rwhigh(d)
given by the Gaussian function as shown in the Figure 11(a), with the eu-
clidean distance between a point and the closest highlight-point as an argu-
ment.

Intensity : The maximum and minimum intensities are calculated in a
K × K neighborhood centered at different points, say pi and pe . These
values are used to calculate Michelson’s contrast. Michelson’s contrast is
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defined as C = Imax−Imin
Imax+Imin

. The difference d = (Iavgpe − Iavgpi
) in the average

intensities calculated in the neighborhood centered at pi and pe, is checked
if it falls below a threshold ε and a reward is generated using the reward-
function given by

RwInt(d) =

{
Cpe−Cpi
Cpe+Cpi

Cpe ≥ Cpe > 0, |d| < ε

0 otherwise
(11)

Cross-Correlation Measure: A small window of size K ×K centered at a
point pi is used as a template to be slided over a rectangular region MxM
centered at another point pe with (M > K). The window slides across the
region and the normalized cross-correlation values (Maximum and Minimum)
are calculated at each point. In order to reduce the effect of noise and improve
the result, Y CrCb color space channels of the image are fed as an input.

4. Collective-Reward Based Approach

This section discusses details about the algorithm presented in the paper,
which makes use of the feature reward functions as discussed in Section 3.

Feature reward functions give higher reward outputs for the points belong-
ing to a semi-transparent object as they emphasize on the distortion created
by the semi-transparent object over the background. Since, the boundary
corresponding to the semi-transparent object is not known, an arbitrarily
selected hypothetical region R is used to calculate the feature distortion val-
ues for each interior (pi) and several exterior (pe) points (with respect to
R) in the image. The automatic selection of the hypothetical region is later
discussed in the section 4.6.

Generally there may be only fewer exterior points similar to an interior
point that are useful in characterizing whether the interior point belongs to
a semi-transparent object or not. Therefore, a general aggregation scheme
for rewards in such situations would be less fruitful as the negative rewards
produced by non-similar exterior points would dominate over the positive
rewards produced by similar ones. Besides, it is also computationally expen-
sive to compute rewards over all the possible pairs of interior and exterior
points. Therefore, we make use of Support Fitness Functions (discussed in
Section 4.2) to find a limited k suitably-fit exterior points for each interior
point, which can be used for collective reward generation and classification.

points lying on the similar background. Only these few exterior points,
which are similar to the actual inaccessible point behind the glass, are useful
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in characterizing whether the corresponding interior point belongs to a semi-
transparent object or not. Usually, we find situations where (N−M−nbg) >>
nbg and therefore, a general aggregation scheme for rewards in such situations
would be less fruitful as the negative rewards produced by (N −M − nbg)
points would dominate over the positive rewards produced by nbg points.
Besides, it is also computationally expensive to compute rewards over all
the possible pairs of interior and exterior points. Therefore, we make use
of Support Fitness Functions (discussed in Section 4.2) to find a limited
k suitably-fit exterior points for each interior point that can be used for
collective reward generation and classification.

A Collective-reward based approach is the process of classifying a point by
aggregation of the results found from a reward-generation scheme where, the
point and its corresponding suitably-fit points participate. The suitably-fit
points are found using Support Fitness Functions and the reward-generation
scheme is a collection of complementary functions called the Feature Reward
Functions that act on the features related to the semi-transparent object.
Figure 12 shows the block diagram of the proposed algorithm discussed in
this paper. Given an input image, a hypothetical region R is selected to set
up connections between interior and exterior points. The term ”connection”
is used to denote an association made between the points for transporting
information along it. The next block in the block diagram 12, which has two
Support Fitness Functions, namely clusters function and distance function
(refer Section 4.2 for details), generates fitness values to all possible pairs of
connections between each interior point and all the exterior points. These
fitness values are an input to the next block which selects the k best neighbors
for each interior point based on the magnitude of the fitness values.

The k connections thus formed for each interior point are then tested
further with the feature reward functions (see Section 3), as shown by the
blocks numbered 1 to 5, to generate a reward. These reward values for all
the connections between the interior and the exterior points are an input to
the Collective Reward and Classification block. This block calculates a total
reward called the collective reward at each interior point for each feature
cue. The collective reward is equal to the weighted average of the individual
rewards received through the connections with the corresponding connection
fitness-values as weights. An ensemble of all the individual feature classifiers
(reward functions) is formed to generate a strong classifier that outputs a
final reward (refer Section 4.4 for details). The result is then passed through
a test condition and then to post-processing functions, which are discussed

16



Figure 12: Block Diagram of the Algorithm

in Sections 4.5 in more detail, to generate a final output.

4.1. Point Sets and Problem Formulation

This section will present a formulation of the detection problem and also
discusses the notations that will be used henceforth. Figure 13 shows a
sample image illustrating the point sets. Let RI and RE denote the set
of points lying interior and exterior to the region R respectively. Let Ptr
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Figure 13: The figure shows the regions corresponding to semi-transparent, opaque and
background points in the image. A hypothetical region R indicated by the blue rectangle
is used for the illustration.

denote the point set corresponding to the semi-transparent objects in RI .
Let Popq denote the set of points in RI that have features different from the
features of points in RE and do not belong to the point set corresponding to
semi-transparent object(s). These points belong to the opaque objects and
texture patches that lie only in RI . We will henceforth refer to these points
as opaque points. Let Pbg denote the set of all points that do not belong to
either the set of points corresponding to the semi-transparent object or the
set of opaque points. So, this point set would include all the points lying in
RE and the points that are not a part of semi-transparent or opaque objects
in RI . Let (Ptr|Pbg) denote a set of all those points of semi-transparent
objects with features similar to some points in Pbg. Let (Ptr|Popq) denote all
those points of semi-transparent objects with features similar to the points
in Popq. As the opaque points do not have features similar to points in Pbg,
we have (Popq|Pbg) = ∅. Therefore, the point-set corresponding to the semi-
transparent objects in RI is given by (12).

Ptr = (Ptr|Popq) ∪ (Ptr|Pbg) (12)

Let Ptotal denote the set of all points in the image. We have,

Ptotal = Popq ∪ (Ptr|Popq) ∪ (Ptr|Pbg) ∪ Pbg (13)

The problem now ramifies down to finding sets (Ptr|Popq) and (Ptr|Pbg). Our
approach is to first segment the set Ptotal into two point sets (Ptr|Pbg) and
(Pbg ∪ Popq ∪ (Ptr|Popq)) out of which the set T1 = (Ptr|Pbg) is extracted
based on the feature-reward output. The subset (Popq ∪ (Ptr|Popq)) is further
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processed only if Popq 6= ∅, to extract the set T2 = (Ptr|Popq) (which is carried
out by Intra-Region Classification, discussed in the Section 4.5). The point
sets T1 and T2 are reported as a final result.

4.2. Support Fitness Functions

(a) (b)

Figure 14: (a) The figure shows an illustration of connections between one interior point
and few exterior points. (b) The figure shows the block diagram corresponding to the
generation of support fitness values.

Recollecting what has been discussed earlier, we have connections set
up between each point pi inside the region and points pe outside the region
(denoted by black lines as shown in the Figure 14(a)). A Support Fitness
Function is a weighting function that provides a fitness score to each of the
connections depending on whether an interior point pi is a suitable semi-
transparent counterpart of an exterior point pe. Among the existing con-
nections between the interior and exterior points, the best k connections are
selected based on their fitness values (Wi) and they form an input to the
reward generation block. Given m interior points, we have a total of k ×m
connections as an output of the block (Figure 14(b)). We have used two
support fitness functions, which are discussed in the sections below.

4.2.1. Clusters Fitness Function

Coarse spatial clustering of the point set Ptotal is carried out to separate
similar regions based on color (Cr and Cb) and intensity gradients (Ix and
Iy). The clustering is done using the K-means algorithm [8]. The number

19



of clusters is computed automatically based on inter-cluster mean distances
and other thresholds. Since, points belonging to semi-transparent objects
are not easily discernible, they would generally either belong to a cluster
of the background (or the foreground points), or a cluster that belongs to
opaque points, or a cluster of points corresponding to highlights. Therefore,
the points belonging to the similar clusters are emphasized and given larger
weights compared to the distinct ones. We used a combination of euclidean
and topology distance metric between the clusters, similar to the one dis-
cussed by Y. Peng et al. in [12], to assign weights to the individual points.

WCj = e
−( c

2
ind
2σ2c

+md2

2σ2
d

)
(14)

Where, σc and σd are the standard deviations with respect to topological
distance (cind) and euclidean distance (md) respectively.

). This is useful as the points of transparent objects have a definite re-
lationship with the surrounding points. Therefore, the combination of cind
and md provides separability among closely similar clusters but also provides
connectivity among clusters with wide mean separation. Note that the term
cind could be removed if the mean distances among all the clusters are nor-
malized. Although, normalization removes the relative fitness-value levels
between multiple support fitness functions, hence cluster index is used.

4.2.2. Distance Fitness Function

Euclidean distance forms an important fitness function. Similarity in
features between a semi-transparent object and the background is higher
if they are closely situated. This also avoids the variation in perspective,
focus and radial distortion in the camera. We made use of two bell-shaped
exponential functions (15), centered at the interior point pi and each varying
across the dimensions of the region R. The coefficients are hand-selected
(a = 0.7 and b = 0.3) to give more emphasis to the smaller dimension of
the region R. D is equal to the euclidean distance between the interior
and the exterior point, i.e. ||pi − pe||. σ1 = 2

3
min(Rwidth,Rheight) and

σ2 = 2
3
max(Rwidth,Rheight) are the variance parameters, where Rwidth

and Rheight are the dimensions of the region R.

WDj = ae
− D2

2σ21 + be
− D2

2σ22 (15)
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The resultant fitness value for each connection (pi, pe) is equal to the product
of the fitness values of the individual fitness functions (16)

Wj = WCj ∗WDj (16)

of the region R. The coefficients are hand-selected (a = 0.7 and b = 0.3)
to give more emphasis to the smaller dimension of the region R for the reasons
explained above. D is equal to the euclidean distance between the interior
and the exterior point, i.e. ||pi − pe||. σ1 = 2

3
min(Rwidth,Rheight) and

σ2 = 2
3
max(Rwidth,Rheight) are the variance parameters, where Rwidth

and Rheight are the dimensions of the region R.

4.3. Generating Rewards

(a) (b) (c)

Figure 15: (a) The figure shows a sample image with an arbitrarily selected region R (blue
rectangle). Points colored green are exterior points and colored red are interior points. An
interior point highlighted by yellow color has k = 40 suitably-fit exterior points highlighted
by cyan color. (b) The figure shows the block diagram corresponding to the generation
of reward values. (c) The figure illustrates the feature rewards generated for the best k
connections. Figures should be viewed in color

The best k connections for each interior point (see Figure 15(a)) (a total
of k ×m connections for m interior points) based on the fitness values (Wj)
are input to this Reward Generation block (see Figure 15(b)). Each of these
connections are tested further with the feature reward functions (see Section
3) to generate a reward which is aggregated for each pi (Figure 15(c)). A
reward is a decimal-point value ranging from 0 to 1. The reward will be high
if pi belongs to a semi-transparent object having features similar to pe and
low if the point pi belongs to an opaque object or the background itself.
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4.4. Collective Reward and Classification

Collective reward is the aggregated result of a feature-reward function
acting on all the connections between an interior point and the corresponding
suitably-fit k exterior points. For each feature-cue f ∈ {Highlights, Cr, Cb,
Saturation, Intensity and Cross-correlation}, a collective reward is found
for every interior-point pi ∈ RI . Let Ifi,j, j ∈ (1, ..., k) denote the reward
generated by a feature reward function (see Section 3) of a feature f , for the
connection pair (pi, pe), where pe belongs to the suitably-fit k points found
via support fitness functions (see Section 4.2). From the reward functions
of each feature f discussed in Section 3 and with the calculated feature
distortion d as an argument, the reward for each connection given by

Ifi,j = Rwf (d) (17)

Let Ifi denote the collective reward for each point pi ∈ RI and for each feature
f ∈{Highlights, Cr, Cb, Saturation, Intensity and Cross-correlation}. It is
calculated using (18)

Ifi =
1

W
′
1

(
W1I

f
i,1 +W2I

f
i,2 + ...+WkI

f
i,k

)
(18)

Where {W1,W2, ...,Wk} are the weights denoting the fitness values (com-
puted using (16) for each connection (pi 7→ p1e, pi 7→ p2e, ..., pi 7→ pke), ∀pi ∈
RI . W

′
1 is a normalization factor equal to (W1 +W2 + ...+Wk).

Collective rewards (Ifi ) for each feature f ∈{Highlights, Cr, Cb, Satura-
tion, Intensity and Cross-correlation} are determined. As each of the indi-
vidual feature functions turn out to be weak classifiers for semi-transparent
object detection, an ensemble of classifiers is formed to build a strong clas-
sifier. The total collective reward Ii for each point pi ∈ RI is then found as
an output to the strong classifier.

4.5. Intra-Region Classification

This section discusses about retrieving the point-set T2 = (Ptr|Popq) (refer
Section 4.1 for the notations used), i.e. the points of semi-transparent objects
that have features similar to the objects that are exclusively present inside
the hypothetical region R. Although this step is only required if there exists
such an object(s).

The discussed process till now extracts only T1 = (Ptr|Pbg), but the point
set T2 = (Ptr|Popq) that also belongs to semi-transparent objects are lost
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(a) (b)

Figure 16: The figure (a) illustrates the regions relating to the semi-transparent object
that have features similar to the background and the opaque patch (object). (b) The final
outcome on carrying out the collective-reward based approach using the region R.

because they do not have features similar to Pbg. Figure 16(a) shows an
illustration with a region R encompassing a semi-transparent object and an
opaque object. The regions of the semi-transparent object are labeled accord-
ingly. Figure 16(b) shows the result of the collective-reward based approach
with the region R. Only the portion (Ptr|Pbg) is detected and the rest of
the semi-transparent object is filtered out. In order to recover this portion
we perform an additional operation called the intra-region classification. Let
CI and CE be the set of clusters (refer Section 4.2.1) present in RI and RE

respectively. A condition CI = CE is checked to initiate this intra-region
classification step.

We first find out the point-set that belongs exclusive in RI (Figure 17(a))
which is given by,

Popq∪(Ptr|Popq) = {pi|P (CI(pi)) ∩ P (CE(pe)) = D,ℵ(D) < δ, ∀pi ∈ RI , ∀pe ∈ RE}
(19)

Where P (CI(pi)) and P (CE(pe)) denote the set of all points that belong to
the cluster-index of the point pi and pe respectively. δ is a small number to
account for those objects that lie mostly inside and have a few points outside
the region. From the gravity center of the detected transparent points that
are in close proximity, Mahalanobis distance (DM) is determined for each
point in the set (Popq ∪ (Ptr|Popq)). The median of the distance set DM ,
denoted by dmed, is used to partition the point-set (Popq ∪ (Ptr|Popq)) into
two sub-sets (or sub-regions) in the image. One region comprising of points
that satisfy DM ≤ dmed and the remaining points into the other region.
Let R′ (Figure 17(a)) be the partition which separates these two regions
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(a) (b)

(c) (d)

Figure 17: (a) The figure shows an opaque patch and a semi-transparent object in-front
of it. It also shows the new hypothetical region R′. (b) The final outcome on carrying out
the collective-reward based approach using the region R′. (c) Intra-region classification
is carried out once again to find a new region R′′ to improve the final outcome. (d) The
normalized appended result found after carrying out the collective-reward based approach
using the regions R, R′ and R′′.

in the region R. The region that is closer to the detected portion of semi-
transparent object is termed as interior (R

′
I) of the new region R′ and the rest

is termed as exterior (R
′
E). The collective-reward based approach is carried

out betweenR
′
I andR

′
E to extract most of the points that belong to (Ptr|Popq).

Figure 17(b) shows the segmented portion (Ptr|Popq). To get a more improved
segmentation, the intra-region classification can be performed another time
to get a new region R′′ which will encompass the remaining portion of the
semi-transparent object (Figure 17(c)). Finally, the result is normalized and
combined to give Ptr = T1∪T2 (see Section 4.1) as shown in the Figure 17(d).
For a qualitative evaluation of the intra-region classification refer Figure 25.
Post Processing Functions: Additional post processing we used to im-
prove the result further are morphological hole filling, restoration of semi-
transparent edges by performing a logical conjuction (And) of the result
with the edge map and re-classification of the highlights close to the detected
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semi-transparent points.

4.6. Automatic Region Selection

(a) (b)

(c) (d)

Figure 18: (a) The figure shows a sample image with a semi-transparent object. (b) A
large region denoted by red points is selected for the first iteration. (c) The outcome of
the first iteration with erroneous results for the points at the central part of the region.
(d) The outcome of the second iteration after using the output of the first iteration as the
region R itself.

We used a two step region selection method to automatically select the
hypothetical region R. The algorithm is executed initially using a large region
encompassing most of the image as shown in the Figures 18(a) and 18(b).
The output for the points situated at the central part of the region may
be erroneous as the distance between the point comparison is large (Figure
18(c)), which makes the noise due to perspective, radial distortion etc. quite
comparable. In order to improve the result, we used the outcome of the first
iteration as a new hypothetical region for the second iteration. This will
re-check all the points that have been detected as semi-transparent points
by executing the algorithm with the close-by points in the second iteration.
Therefore, we get a better result as shown in the figure 18(d). Algorithm 1
presents the pseudocode of the complete automatic collective-reward based
approach using 2-step region selection method.

points by executing the algorithm with the close-by points in the second
iteration. Therefore, we get a better result as shown in the figure 18(d).
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Algorithm 1 presents the pseudocode of the complete automatic collective-
reward based approach using 2-step region selection method.

Algorithm 1 Collective-Reward Based Approach using 2-Step Region Se-
lection Method

iter = 0
while iter != 2 do

Initialize the Region R
for each pi ∈ RI do

for each feature f do
compute fitness values ∀pe ∈ Re

find the k-point Neighborhood
compute the feature-reward values
compute the collective-reward value

end for
classify pi using ensemble of feature-classifiers

end for
post-process and perform intra-region classification if required
generate the result image I
R = Boundary(I)
iter++

end while
report the result I
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5. Experimental Results

(a) (b)

(c) (d)

(e) (f)

Figure 19: The figures (a)-(f) show a few semi-transparent objects and the corresponding
detection results. The images should be viewed in color. For all results we used the same
parameters that were learnt via offline training, and a two-step region selection method.

In this section we will present some of the results of several experiments
conducted to test our algorithm over several images taken from a webcam
and also from the Internet. We made use of a Logitech web camera to capture
images of resolution equal to 640x480. One of the main reasons behind using
the webcam is to extend the approach to a robotics platform accounting for
the effects of perspective and noise due to focus and radial distortion.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 20: The figures (a)-(o) show a few semi-transparent objects and the corresponding
detection results using the two-step region selection method. The Second column shows the
result of the first iteration and the third column shows the result of the second iteration.
The images should be viewed in color.
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To make the algorithm computationally tractable, the pixels considered
are sampled as 1 to 10 pixels in the image. The exterior points used for
comparison are restricted to the k = 40 best connections found out by
the fitness values. To train the reward functions we collected 35 sample-
regions of transparent objects and the corresponding close-by regions of the
background. To quantify the results, we carefully marked the boundaries of
the semi-transparent objects in images and performed experiments by mea-
suring the precision and the recall rate. We collected a 50 image dataset
(made available in the Internet URL: http://www.idsia.ch/~kompella/

datasets/TransparentDataset.zip) with different objects and background
scenarios. As the final result of the algorithm is probabilistic, the precision
rate is calculated taking this into account. True positives are measured as
the number of detected points, with the corresponding probabilities, lying
within the boundary. Similarly, false positives are measured as the num-
ber of detected points along with the probabilities lying outside the marked
boundary. We first discuss here the qualitative results followed with the
statistics obtained from the quantitative analysis.

Figures 19-20 show results of a few images containing semi-transparent
objects over different backgrounds. As discussed in the section 4.6, we eval-
uated our approach using the two-step region selection. The algorithm is
executed initially using a large region encompassing most of the image. We
then use the outcome of the first iteration as a region R for the second iter-
ation. Figures 20 show results of the two-step region selection method. The
second column shows the result of the first iteration of the algorithm. We
can see that the first-iteration results are noisy at the central part of the
image. This is due to the fact that the comparisons for the central points are
made with distant points outside the region. The third column of the Fig-
ure 20 shows the result of the second iteration. We can clearly see that the
precision of the result has improved. Figures 20(a)-(c) and 20 (d)-(f) show
experiments conducted using a thin plastic cup and a refractive glass respec-
tively. Figure 20(g) contains a semi-transparent object made of glass along
with two opaque objects. The algorithm detects the glass as shown in the
Figure 20(i). We can notice that there are a few false positives detected on
the left. This is because the algorithm had picked up the points belonging to
the dim shadows and classified them as points belonging to semi-transparent
regions. This could be explained by the fact that light shadows also ap-
pear as transparencies over the background as they are very similar and hold
most features of a semi-transparent object. From a single image it remains a
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challenging problem to filter out dim shadows from the result. Although, as
the variation in the shadow is gradual, a nearby-point comparisons will elimi-
nate most part of it. Figures 20(j) shows another scenario with a transparent
sheet placed on sheets of different color. The algorithm successfully detects
the transparent sheet in the first iteration itself. We can see a small unde-
tected patch on the top portion of the transparent sheet. On performing the
second iteration, many exterior points are taken from this undetected patch.
Therefore we see that more points of the transparent sheet get filtered due to
the point-point comparisons within the transparent sheet. Figures 20(m)-(o)
show the result of another experiment with two transparent objects placed
next to each other.

Figure 21 shows graphs of a quantitative study made by varying the num-
ber of connections used for the algorithm. Figures 21(a) and 21(b) show the
variation of Precision and Recall rates with an increase in the number of
connections. We find that the precision rate slightly reduces with a number
of connections larger than 10. This is due to the fact that as we increase
the number of connections, many outlier points get involved in generating
the rewards and therefore the noisy rewards will increase summing up to an
erroneous final reward. Due to this few points outside the semi-transparent
objects may get detected as transparent media although with a low proba-
bility and hence the slight reduction in the precision. This is the reason why
brute force evaluation of all the points in this technique may not work well
even if computational time is considered not to be a constraint. We can also
find that there is a drop in the precision with a decreasing number of connec-
tions less than 10. This can be explained with the help of the recall graph
(Figure 21(b)). The recall rate as expected increases with the increase in the
number of connections, ie., many points inside the transparent object are now
recognized as belonging to the transparent media. With a decrease in con-
nections less than 10, we find that the recall rate becomes very low. Due to
this the noise points detected outside affect the precision value and therefore
the precision reduces with a decreasing number of connections. Figure 21(c)
shows a graph of processing time with increasing number of connections.

As a good combination in the precision and recall values, we achieved a
precision rate of 75.73% and a recall rate of 66.21%. We consider the rates
to be pretty good due to the fact that detection of the transparent objects
is a fairly difficult problem to solve. Our precision, although slightly less
than the precision reported by McHenry and Ponce [9], i.e. 77.03%, is for a
challenging dataset. We were not able to obtain the original images used in
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(a) (b)

(c)

Figure 21: The figure shows graphs of (a) Precision Vs Number of Connections, (b)
Recall Vs Number of Connections, and (c) Processing−time Vs Number of Connections.

[9]. So, we made our own dataset (URL: http://www.idsia.ch/~kompella/
datasets/TransparentDataset.zip) with images containing several object
scenarios and some of which may fail to get detected by the algorithm pre-
sented in [9]. As our algorithm is based on points, the information at each
point is independent from the structure of the other points situated around.
Therefore, if a semi-transparent object has a few opaque regions on it, the
corresponding opaque points will get filtered out by the algorithm. This is
one of the reasons for the recorded recall rate to be slightly lower. This
in a way acts as an advantage to filter out opaque parts of the transparent
objects.
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(a) (b) (c)

Figure 22: The figure (a) shows a sample image with a semi-transparent object. (b) The
result of the algorithm after the first iteration. (C) The result of the algorithm after the
second iteration.

Figures 22 show the result of another experiment conducted on a semi-
transparent object. We see that some points of the glass are not detected.
This is due to the presence of a slightly darker shadow behind the glass.
As mentioned earlier, we used the two-step region selection to evaluate our
approach. Although it works quite well, it may not be the optimal method
to get the best precision and recall rates. Figure 23(a) shows a sample image
of a semi-transparent object with a region R selected by the red points. We
see that the result (Figure 23(b)) is quite noisy. On the other hand when a
region R as shown in the Figure 23(c) is used, we get a much better output
(Figure 23(d)). We will look into the aspect of improving the region selection
as a future improvement to the algorithm.

Figure 24(a) shows an image with several types of objects. We can find in
Figure 24(b) that the semi-transparent glass on the left and the transparent
region of the glass bottle on the right are detected with a good recall rate
but with several false positives. As the result is probabilistic, on increasing
the threshold, points with lower probability are filtered out and we find the
result to be much better than earlier (Figure 24(c)). Figure 25 shows results
of a few more experiments conducted on semi-transparent objects. Figure
25(a) shows a thin plastic bottle placed in front of an opaque object. This
is an example where intra-region clustering takes place. Similarly, a glass
placed in front of the obstacle is also detected as shown in Figures 25(c)-
(d). We can observe from both the results that a small patch on the top
right of the image is falsely detected as semi-transparent. This is due to fact
that the patch is similar to the background and could be considered as its
distorted form. And, as the algorithm is point-based, the patch gets detected
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(a) (b)

(c) (d)

Figure 23: The figure (a) shows a sample image with a larger region R used for the
detection. (b) The corresponding result of the algorithm. (c) The sample image with a
smaller region R used for detection. (d) The corresponding result of the algorithm.

(a) (b) (c)

Figure 24: The figure (a) shows a sample image with several objects. (b) The result of the
algorithm with a lower threshold. (C) The result of the algorithm with a higher threshold.

as a semi-transparent object. Although we considered these as false positives
while quantifying the results, it may entirely not be a disadvantage to pick out
such patches. One such situation which would produce a very similar patch
is an oil or water spill on the table. As a conclusion, the effectiveness of the
algorithm lies in detecting any media that creates a percept of transparency.
Figures 26(a)-(b) show another example of a false detection where the patch
as discussed earlier has been falsely detected with a higher probability due to
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(a) (b) (c) (d)

Figure 25: Figures (a)-(d) show a few semi-transparent objects and the corresponding
detection results. The images should be viewed in color.

(a) (b) (c) (d)

Figure 26: The figures (a)-(b) show an example of a false detection by the algorithm. The
figures (c)-(d) show an example of a miss-detection of the semi-transparent object present
in the image.

the presence of a white plastic close to it which got detected as highlights in
the image. Figures 26(c)-(d) show an example of a complete miss-detection
of the semi-transparent object in the image.

6. Conclusions and Future Work

We proposed an approach to detect the presence of transparencies in an
image using the collection of rewards via support fitness functions. This ap-
proach makes use of the dependency between the points belonging to the
transparent object and the points that are situated around. This accounts
for both the refracted background and reflected foreground about the semi-
transparent object. The method uses a hypothetical region to determine the
transparent objects inside it. The hypothetical region can either be manu-
ally selected by the user or can be automated. A two-step region selection
method was discussed in this regard. An improvement in the region- selec-
tion method forms one of the immediate goals of future work. The algo-
rithm is point-based and the detection at each point is independent from the
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structure of other detected transparent points of the object (except for the
immediate neighbors which are used in the Nearest Neighbor Transparency
post-processing function, refer to section 4). A better result may be achieved
by combining the information regarding the structure of the detected points.

We look forward to carry out several other important applications such
as transparent door detection that helps in localization and mapping of the
robot looking through a glass door. Obstacle avoidance along with the local-
ization helps the robot to safely navigate along the corridors made of glass
without colliding. The collective-reward based approach could well be used
to detect other kinds of transparent media like dim shadows, water-spill or
any material that creates a percept of transparency.
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