
Incremental Slow Feature Analysis

Varun Raj Kompella, Matthew Luciw, and Jürgen Schmidhuber
IDSIA, Galleria 2

Manno-Lugano 6928, Switzerland
{varun,matthew,juergen}@idsia.ch

Abstract
The Slow Feature Analysis (SFA) unsupervised
learning framework extracts features representing
the underlying causes of the changes within a tem-
porally coherent high-dimensional raw sensory in-
put signal. We develop the first online version
of SFA, via a combination of incremental Princi-
pal Components Analysis and Minor Components
Analysis. Unlike standard batch-based SFA, on-
line SFA adapts along with non-stationary environ-
ments, which makes it a generally useful unsuper-
vised preprocessor for autonomous learning agents.
We compare online SFA to batch SFA in several
experiments and show that it indeed learns without
a teacher to encode the input stream by informa-
tive slow features representing meaningful abstract
environmental properties. We extend online SFA
to deep networks in hierarchical fashion, and use
them to successfully extract abstract object position
information from high-dimensional video.

1 Introduction
Without a teacher, Slow Feature Analysis (SFA) [Wiskott and
Sejnowski, 2002; Franzius et al., 2007; Legenstein et al.,
2010] extracts temporal regularities and invariant represen-
tations from rapidly changing raw sensory inputs, in a way
similar to how the general technique of Predictability Maxi-
mization [Schmidhuber and Prelinger, 1993]. [Schmidhuber
and Prelinger, 1993] extracts invariant features from different
but related data points. However, current SFA techniques are
not readily applicable to open-ended developmental learning
agents. They estimate covariance matrices from the data via
batch processing. We derive the first fully incremental ver-
sion of SFA, called IncSFA, which does not need to store any
input data or expensive covariance matrix estimates1.

SFA uses principal component analysis (PCA) [Jolliffe,
1986] twice. In the first stage, PCA whitens the signal

1Bergstra & Bengio [Bergstra and Bengio, 2009] discuss a block
incremental learning method that uses the slowness principle of ko-
rding’s work [Kording et al., 2004] via estimating the covariance
matrix in mini-batches. Berkes & Wiskott [Berkes and Wiskott,
2005] address the advantages of the SFA framework as compared
to the aforementioned approach.

to decorrelate it with unit variance along each PC direc-
tion. In the second stage, PCA on the derivative of the
whitened signal yields slow features. Our IncSFA replaces
batch PCA by incremental alternates. In the pre-whitening
stage we use the state-of-the-art incremental PCA method,
Candid Covariance-Free Incremental Principal Component
Analysis (CCIPCA) [Weng et al., 2003]. CCIPCA is not
feasible for the second stage, where the slow features cor-
respond to the least significant components. Minor Com-
ponents Analysis (MCA) [Oja, 1992; Chen et al., 2001;
Peng et al., 2007] incrementally extracts the principal com-
ponent with the smallest eigenvalue (the slowest feature). We
use MCA with sequential addition [Chen et al., 2001] to ex-
tract multiple minor components in parallel.

The rest of this paper is organized as follows. Section 2
reviews SFA. Sections 3 and 4 discuss CCIPCA and MCA,
respectively. Sec. 5 presents our IncSFA. Sec. 6 contains ex-
periments and results; Sec. 7 concludes.

2 Slow Feature Analysis

SFA is an unsupervised learning technique guided by the
slowness principle. In many settings, the best functions map-
ping the input stream to the most slowly changing output
signals are representative of some fundamental agent-world
property, abstracting away irrelevant details picked up by the
sensors [Schmidhuber and Prelinger, 1993]. Consider a mo-
bile agent with high-dimensional video input exploring an
otherwise static room. The input is caused by the agent’s po-
sition and orientation, and the emerging slow features com-
pactly encode this information [Franzius et al., 2007].

2.1 Learning Problem

Formally, SFA is concerned with the following optimization
problem:

Given an I-dimensional input signal x(t) =
[x1(t), ..., xI(t)]T , find a set of J instantaneous real-valued
functions g(x) = [g1(x), ..., gJ(x)]T , which together gener-
ate a J-dimensional output signal y(t) = [y1(t), ..., yJ(t)]T

with yj(t) := gj(x(t)), such that for each j ∈ {1, ..., J}

∆j := ∆(yj) := 〈ẏ2j 〉 is minimal (1)

under the constraints

〈yj〉 = 0 (zero mean), (2)

〈y2j 〉 = 1 (unit variance), (3)

∀i < j : 〈yiyj〉 = 0 (decorrelation and order), (4)

with 〈·〉 and ẏ indicating temporal averaging and the deriva-
tive of y, respectively.

In other words, the problem is to find instantaneous func-
tions gj that generate different output signals varying as
slowly as possible. The decorrelation constraint (4) ensures
different functions gj do not code for the same features. The
other constraints (2) and (3) avoid a trivial constant output
solution.

2.2 Solution
This learning problem is not straightforward, as it is an opti-
mization of variational calculus [2002]. But it can be greatly
simplified through an eigenvector approach. Consider that
the gj are constrained to be linear combinations of a finite
set of nonlinear functions h. Now, yj(t) = gj(x(t)) =
wT

j h(x(t)). Let z(t) = h(x(t)). The SFA problem now
becomes finding the weight vectors wj to minimize

∆(yj) = 〈ẏ2j 〉 = wT
j 〈żżT 〉 wj . (5)

subject to the constraints. If the functions of h are chosen
such that z has unit covariance matrix and zero mean, the
three constraints will be fulfilled if and only if the different
weight vectors are orthonormal. To select such an h, a well-
known process called whitening (or sphering), which requires
the principal components of the input data, will map x to a z
with zero mean and identity covariance matrix.

Given such a z, the SFA problem becomes linear. In order
to solve for the slow features, note Eq. 5 is minimized with
the set of J normed eigenvectors of 〈żżT 〉with the J smallest
eigenvalues. So another set of principal components (of ż)
will provide the desired features.

3 Candid Covariance-Free Incremental
Principal Component Analysis

For online whitening of input x, we use Candid Covariance-
Free Incremental (CCI) PCA (extending Oja’s work [Oja,
1982]). CCIPCA provides the eigenvectors and eigenvalues
necessary for whitening, and does not keep an estimate of the
covariance matrix, which can be computationally prohibitive
for high-dimensional input. CCIPCA is guaranteed to con-
verge to the true components [Zhang and Weng, 2001].

A PC is a normed eigenvector v∗
i of the data covariance

matrix, with eigenvalue λ∗i , the variance of the samples along
v∗
i . By definition, an eigenvector and eigenvalue satisfy

E[uuT]v∗
i = λ∗i v

∗
i , (6)

where u is a zero-mean x. The set of eigenvectors are or-
thonormal, and are ordered such that λ∗1 ≥ λ∗2 ≥ ... ≥ λ∗K .

The whitening matrix is generated by multiplying the ma-
trix of principal components V̂ = [v∗

1, ..v
∗
K], by the diagonal

matrix D̂, where component d̂i,i =
1√
λ∗i

. After whitening

via z(t) = V̂D̂u(t), then E[zzT] = I . In IncSFA, we use
online estimates of V̂ and D̂.

3.1 CCIPCA Updating
For observations ui, the first PC is the expectation of the nor-
malized response-weighted inputs. Eq 6 can be rewritten as

λ∗i v∗
i = E [(ui · v∗

i) ui] , (7)

The corresponding incremental updating equation, where
λ∗i v∗

i is estimated by vi(t), is

vi(t) = (1−η) vi(t−1)+η

[
ui(t) · vi(t− 1)

‖vi(t− 1)‖
ui(t)

]
. (8)

where η is the learning rate. In other words, both the eigen-
vector and eigenvalue of the first PC can be found as the sam-
ple mean of Eq. 7. Then, the estimate of the eigenvalue is
given by λi(t) = ‖vi(t)‖.

3.2 Lower-Order Principal Components
Any component besides the first not only must satisfy Eq. 6
but must also be constrained to be orthogonal to the other
components. CCIPCA uses the residual method, which gen-
erates observations in a complementary space for the lower-
order eigenvectors. Denote ui(t) as the observation for com-
ponent i. When i = 1, u1(t) = u(t). When i > 1, ui is
a residual vector, which has the “energy” of u(t) from the
higher-order components removed. Solving for the first PC
in this residual space solves for the i-th component overall.
To create a residual vector, ui is projected onto vi to get the
energy of ui that vi is responsible for. Then, the energy-
weighted vi is subtracted from ui to obtain ui+1:

ui+1(t) = ui(t)−
(

uT
i (t)

vi(t)

‖vi(t)‖

)
vi(t)

‖vi(t)‖
. (9)

4 Minor Components Analysis
Incremental PCA is in general unsuitable for the second stage
of batch PCA, since the slow features will correspond to the
eigenvectors with the smallest eigenvalues. Instead, we use
Minor Components Analysis MCA [Oja, 1992; Chen et al.,
2001; Peng et al., 2007]. Minor components are also PCs,
but the first minor component is the PC direction in which
the data has smallest variance. Chen et al. [2001] pointed out
the duality between minor components and PCs. For some
positive definite matrix C, the eigenvectors of γI−C, where
γ > λ1, will be of the opposite order. So, switching the sign
of incremental PCA (i.e., changing Hebbian to anti-Hebbian
updating) is not enough; MCA needs an additional penalty
term.

4.1 MCA Updating
To extract the first minor component in each space, we use
Peng et al.’s low-complexity algorithm [2007] allowing for

a learning rate that does not vanish as time increases (im-
portant for open-ended learning). The update rule combines
anti-Hebbian learning with a penalty term designed such that
convergence can be proven [Peng et al., 2007], provided the
constant learning rate is small enough, and the initial estimate
is not orthogonal to the true component (or the zero vector):

wi(t) = 1.5wi(t− 1)− η Ci wi(t− 1) (10)

− η [wT
i (t− 1)wi(t− 1)] wi(t− 1),

where, for the first minor component, C1 = ż(t)żT (t).

ηλ1 < 0.5, ||w(0)||2 ≤ 1

2η
and wT (0)w∗ 6= 0 (11)

where w(0) is the initial feature estimate and w∗ the true
eigenvector associated with the smallest eigenvalue.

4.2 Lower-Order Slow Features
For extracting more than one slow feature, the residual
method used by incremental PCA will not work due to the
aforementioned duality. Instead, we use Chen et al.’s sequen-
tial addition, which shifts each observation into a space where
the minor component of the current space will be the first PC,
and all other PCs are reduced in order by one. Sequential
addition updates the matrix Ci, ∀i > 1 as follows:

Ci(t) = Ci−1(t)+γ(t)
(
wi−1(t)wT

i−1(t)
)
/
(
wT

i−1(t)wi−1(t)
)

(12)
where γ must be larger than the largest eigenvalue of
E[ż(t)żT (t)].

To automatically set γ, we compute the greatest eigenvalue
of the derivative signal through another CCIPCA rule to up-
date for only the first PC. Then, let γ = λ1(t) + ε, where ε is
a small positive real number.

5 Incremental Slow Feature Analysis
For each time step t = 0, 1, . . .:

5.1 Algorithm
1. Sense: Grab the current raw input as vector x̆(t).
2. Non-Linear Expansion: To deal with non-linearity, op-

tionally generate an expanded signal x(t) with I compo-
nents, e.g. for a quadratic expansion:

x(t) = [x̆1(t), ..., x̆d(t), x̆21(t), x̆1(t)x̆2(t), ..., x̆2d(t)]
(13)

3. Mean Estimation and Subtraction: If t = 0, set
x̄(t) = x(0). Otherwise, update mean vector estimate
x̄(t):

x̄(t) = (1− η) x̄(t− 1) + η x(t). (14)

and subtract the mean:

u(t)← x(t)− x̄(t). (15)

4. CCIPCA: Update estimates of the most significant K
principal components of u, where K ≤ I:

(a) If t < K, initialize vt(t) = u(t).
(b) Otherwise do the following two steps from j =

1, 2, ...,K. Let u1(t) = u(t). Then, execute
CCIPCA equations 8 and 9.

5. Whitening and Dimensionality Reduction: Let V(t)
contain the normed estimates of the K principal compo-
nents, and create diagonal matrix D(t), where Di,i =

1/
√
λi(t),∀i ≤ K. Then, z(t) = V(t)D(t)u(t).

6. Derivative Signal: As a forward difference approxima-
tion of the derivative, let ż(t) = z(t)− z(t− 1).

7. Extract First Principal Component: Use CCIPCA to
update the first PC of ż, to set γ(t).

8. Slow Features: Update estimates of the least significant
J PCs of ż, where J ≤ K:

(a) If t < J , initialize wt = ż(t).
(b) Otherwise, let C1(t) = ż(t)żT (t), and for each

i = 1, ..., J , execute incremental MCA updates in
equations 10 and 12.

9. Output: Let W(t) contain the current estimates of the
slow features. Then, y(t) = zT (t)W(t) is the SFA out-
put.

5.2 Practical Considerations
Dimensionality Reduction is possible after both the first and
the second phase. In the latter we can select J << K, the
number of slow features to compute. In the first, we discard
all but the top K components. A method we found to be
successful is to set K such that no more than a certain per-
centage of the previously estimated total data variance (the
denominator below) is lost. Let β be the ratio of total vari-
ance to keep (e.g., 0.95), and compute the smallest K such

that
∑K

k λk(t)∑I
i λk(t− 1)

> β.

Learning Rates and Convergence: With a CCIPCA
learning rate set to 1/t, IncSFA will converge to the same fea-
tures (any number) as batch-based SFA, provided the MCA
conditions are satisfied (see 11). In practice, we enable plas-
ticity by letting CCIPCA’s learning rate converge to the MCA
learning rate, a small constant.

How to set the latter? We are guided by the slowness mea-
sure (s(xt)) (Wiskott & Sejnowski [2002]) of the input sig-
nal, which measures the temporal variation frequency and is
related to the greatest eigenvalue of ż(t) (refer to Section 5).
In theory, the upper bound of the MCA learning rate (ηU)
varies according to ηU ∝ s(xt)

−2. The closer the rate to this
bound, the faster learning. In our experiments, we manually
set rates right below this bound.

For open-ended learning, convergence is not desired. But
an always nonzero learning rate makes the algorithm less
stable (the well-known stability-plasticity dilemma), due to
learning rate-caused overshoots/errors. In our experiments
this was not a problem though.

6 Experiments and Results
6.1 Simple Signals: Proof of Concept

(a) (b)

Figure 1: Experiment conducted on a simple non-linear input
signal. A learning rate of η = 0.08 was used. (a) Input Signal
(b) Output RMSE plot (c) Batch SFA output of the first slow
feature (d)-(f) IncSFA output at t = 2, 5, 10 epochs. (g) Batch
SFA output of the second slow feature (h)-(j) IncSFA output
at t = 2, 5, 10 epochs.

As a basic proof of concept of IncSFA, we tried a prob-
lem introduced in the original SFA paper [Wiskott and Se-
jnowski, 2002]. The input signal is x̆1(t) = sin(t) +
cos(11 t)2, x̆2(t) = cos(11 t), t ∈ [0, 2π] — both vary
quickly over time (see Figure 1(a)). A total of 2, 000 discrete
datapoints are used for learning. The slowest feature hidden
in the signal is y1(t) = x̆1(t) − x̆2(t)2 = sin(t), and the
second is x̆2(t)2 — these are the features extracted by both
batch SFA and IncSFA. Figure 1(b) shows the Root Mean
Square Error (RMSE) of output signals compared to the true
output, over multiple epochs of training. Figure 1(c) and (g)
shows the feature outputs from batch SFA, and (to the right)
the IncSFA outputs at 2, 5, and 10 epochs.

6.2 Logistic Map: Complex Signals and High
Dimensionality

To test IncSFA’s ability to uncover structure hidden in com-
plex signals and high-dimensional data, we use parts of a
chaotic time series derived from a logistic map [T. Zito and
Berkes, 2008]:

x̆(t+ 1) = (3.6 + 0.13 γ(t))x̆(t) (1− x(t)), (16)
which has a slowly varying driving force γ(t) (to be extracted
by IncSFA) hidden in a signal of complicated dynamics. The

(a) (b) (c)

Figure 2: Experiment conducted on a chaotic time series de-
rived from a logistic map. A learning rate of η = 0.004 was
used. (a) Driving Force (b) Input (c) Output RMSE plot (d)
Batch SFA output of the slowest feature (e)-(g) IncSFA out-
put at t = 15, 30, 60 epochs.

γ(t) used is made up of two frequency components (5 and 11
Hz), given by

γ(t) = sin(10πt) + sin(22πt). (17)
Figures 2(a) and 2(b) plot the driving force signal γ(t) and

the generated time series x̆(t), respectively. A total of 1, 000
discrete datapoints are used. To reconstruct the time series,
we embed it in a 10 dimensional space using a sliding tem-
poral window of size 10 (we use the TimeFramesNode from
the MDP toolkit [T. Zito and Berkes, 2008] for this). The sig-
nal is then expanded quadratically to generate an input signal
with 65 dimensions. Figure 2(c) shows the convergence of
the incremental SFA on the batch SFA output. Figure 2(d)
shows the batch SFA output, and Figures 2(e)-(g) show the
outputs of the incremental SFA at 15, 30 and 60 epochs.

6.3 2D Exploration: Invariant Spatial Coding

Figure 3: (a) Batch SFA output of the first slow feature and
(b) the second slow feature (c) IncSFA output of the first slow
feature and (d) the second slow feature after 50,000 samples
with a learning rate η = 0.003. Figures best viewed in color.

Epochs over the same sequence are not needed; IncSFA
also works if data is generated from some movement
paradigm which may not lead to exact sequence repetitions.

We use the paradigm of Franzius et al. [Franzius et al., 2007],
who fed SFA into ICA to derive computational place cells
active at specific agent locations, like those in the rat hip-
pocampus. Such invariant representations of the environment
are useful for navigational tasks of organisms or robots.

Our simulated agent performs a random walk in a two-
dimensional bounded space. Brownian motion is used to gen-
erate agent trajectories approximately like those of rats. The
agent’s position p(t) is updated by a weighted sum of the cur-
rent velocity and gaussian white noise, with standard devia-
tion vr. The momentum term m can assume values between
zero (massless) and one (infinite mass), so that higher values
of m lead to smoother trajectories and more homogeneous
sampling of space in less time. Once the agent crosses the
spatial boundaries, the current velocity is halved and an alter-
native random velocity update is generated, until a new valid
position is reached. Noise variance vr = [3.0, 2.5]T , mass
m = 0.75 and 50, 000 data points are used for generating the
training set. We use a separate regular grid test dataset for
evaluation. Here is the movement paradigm used:
currV el← p(t)− p(t− 1);
repeat
noise← GaussianWhiteNoise2d() ∗ vr;
p(t+ 1)← p(t) +m ∗ currV el + (1−m) ∗ noise;
if not isInsideWalkArea(p(t+ 1)) :
currV el← currV el/2;

until isInsideWalkArea(p(t+ 1))
The movement paradigm [Franzius et al., 2007] yields slow
feature outputs in the form of half-sinusoids, shown in Figure
3. These features together code for the agent’s x and y posi-
tion in the environment. The first slow feature (Figure 3(a))
is invariant to the agent’s x position, the second (Figure 3(b))
to its y position (y axis horizontal). IncSFA’s results (Figures
3(c)-(d)) are close to the ones of the batch version, with an
RMSE of [0.0536, 0.0914]T .

6.4 High-Dimensional Video: Hierarchical IncSFA
To test the scalability of IncSFA, we feed it with a high-
dimensional video stream based on 20, 000 images generated
by the iCub simulator [V. Tikhanoff and Nori, 2008], an
OpenGL-based software specifically built for the iCub
robot. Our experiment mimics the robot observing a moving
interactor agent, modeled as a rectangular flat board moving
back and forth in depth over the range [1, 3] meters in front
of the robot, using a movement paradigm similar to the one
discussed in Section 6.3. Figure 4(a) shows the experimental
setup in the iCub simulator. Figure 4(b) shows a sample
image from the dataset. Monocular images were captured
from the robot’s left eye and downsampled to 83×100 pixels
(an input dimension of 8, 300).

Hierarchical Network: We wish the robot to compute fea-
tures that code for distance. This is a challenging problem,
due to the highly nonlinear function mapping pixel intensi-
ties to distance. We use a hierarchical model motivated by
the human visual system, similar to the one of Franzius et
al. [2007].

Figure 5 shows the hierarchical architecture, made up of
several layers of multiple IncSFA units, acting over overlap-

Figure 4: (a) Experimental Setup: iCub Simulator (b) Sam-
ple image from the input dataset (c) Batch-SFA output (d)
IncSFA output (η = 0.005)

Figure 5: Hierarchical-Network Architecture

ping rectangular receptivefields of smaller dimensions. On
the lowest layer, the receptive field of each module consists
of an image patch of 10 × 10 pixels. The output from the
first layer forms a 15 × 19 grid with 10 slow features per
each module. With overlapping receptive fields of 5× 5, this
layer’s output, with 5 slow features per module, becomes a
4 × 5 × 5 grid. Similarly, third and fourth layers decrease
signal dimension to produce one single output. These lay-
ers are trained sequentially from bottom to top over the entire
dataset.

In general, the number of successfully extracted slow fea-
tures is only limited by the performance of CCIPCA as com-
pared to batch PCA. Batch PCA can potentially better extract
the eigenvectors associated with the smallest eigenvalues as it
can iterate over all the data. However, this information, when
passed on to our second phase, is rarely useful (for the input
data, small eigenvalue directions can typically be removed).

Figures 4 show batch SFA and IncSFA outputs. The ex-
pected output is of the form of a sinusoid (refer to Section 6.3)
extending over the range of board positions. IncSFA gives a
slightly noisy output, probably due to our usage of a constant
dimensionality reduction value for all units in each layer of

the network, selected to maintain a consistent grid structure.
Due to this, some units with eigenvectors having very small
eigenvalues emerged in the first stage, with receptive fields
observing comparatively few input changes, thus slightly cor-
rupting the whitening result, and adding small fluctuations to
the overall result. (Building an adaptive hierarchcial network
architecture is one of our future goals.)

A supervised quadratic regressor was trained with ground
truth labels on 20% of the dataset, and tested on the other
80%, to measure the quality of features for some classifier or
reinforcement learner using them (see RMSE plot). IncSFA
derived the driving forces from a complex and continuous
input video stream in a completely online and unsupervised
manner.

7 Conclusions
IncSFA is the first online algorithm for Slow Feature Analy-
sis, constructed via a combination of incremental PCA and
MCA. We showed why IncSFA works and how it resists
the curse of dimensionality. IncSFA was successfully com-
pared to batch SFA. To deal with the high nonlinearity in-
volved in extracting slow features from images, a hierarchi-
cal IncSFA network was built. It performed well on high-
dimensional video. IncSFA represents an important step for-
ward, as it opens up the potential of SFA for unsupervised
pre-processing of large sets of high-dimensional and/or non-
stationary data, such as EEG signals, sensory input streams
of autonomous robots, etc.

Acknowledgments
This work was partially funded by the EU project FP7-
ICT-IP-231722 (IM-CLeVeR) and SNF Sinergia Project
CRSIKO-122697.

References
[Bergstra and Bengio, 2009] James Bergstra and Yoshua

Bengio. Slow, decorrelated features for pretraining com-
plex cell-like networks. pages 99–107, 2009.

[Berkes and Wiskott, 2005] Pietro Berkes and Laurenz
Wiskott. Slow feature analysis yields a rich repertoire of
complex cell properties. Journal of Vision, 5(6):579–602,
jul 2005.

[Chen et al., 2001] T. Chen, S.I. Amari, and N. Murata. Se-
quential extraction of minor components. Neural Process-
ing Letters, 13(3):195–201, 2001.

[Franzius et al., 2007] M. Franzius, H. Sprekeler, and
L. Wiskott. Slowness and sparseness lead to place, head-
direction, and spatial-view cells. PLoS Computational Bi-
ology, 3(8):e166, 2007.

[Jolliffe, 1986] I. T. Jolliffe. Principal Component Analysis.
Springer-Verlag, New York, 1986.

[Kording et al., 2004] Konrad P. Kording, Peter Konig, Kon-
rad P, Christoph Kayser, Christoph Kayser, Wolfgang Ein-
hauser, and Wolfgang Einhauser. How are complex cell
properties adapted to the statistics of natural stimuli? Jour-
nal of Neurophysiology, 91:2004, 2004.

[Legenstein et al., 2010] R. Legenstein, N. Wilbert, and
L. Wiskott. Reinforcement learning on slow features of
high-dimensional input streams. PLoS Computational Bi-
ology, 6(8), 2010.

[Oja, 1982] E. Oja. Simplified neuron model as a princi-
pal component analyzer. Journal of mathematical biology,
15(3):267–273, 1982.

[Oja, 1992] E. Oja. Principal components, minor compo-
nents, and linear neural networks. Neural Networks,
5(6):927–935, 1992.

[Peng et al., 2007] D. Peng, Z. Yi, and W. Luo. Convergence
analysis of a simple minor component analysis algorithm.
Neural Networks, 20(7):842–850, 2007.

[Schmidhuber and Prelinger, 1993] J. Schmidhuber and
D. Prelinger. Discovering predictable classifications.
Neural Computation, 5(4):625–635, 1993.

[T. Zito and Berkes, 2008] L. Wiskott T. Zito, N. Wilbert and
P. Berkes. Modular toolkit for data processing (mdp): a
python data processing framework. Frontiers in Neuroin-
formatics, 2, 2008.

[V. Tikhanoff and Nori, 2008] P. Fitzpatrick G. Metta L. Na-
tale V. Tikhanoff, A. Cangelosi and F. Nori. An open-
source simulator for cognitive robotics research: The pro-
totype of the icub humanoid robot simulator, 2008.

[Weng et al., 2003] J. Weng, Y. Zhang, and W. Hwang. Can-
did covariance-free incremental principal component anal-
ysis. 25(8):1034–1040, 2003.

[Wiskott and Sejnowski, 2002] Laurenz Wiskott and Ter-
rence Sejnowski. Slow feature analysis: Unsupervised
learning of invariances. Neural Computation, 14(4):715–
770, 2002.

[Zhang and Weng, 2001] Y. Zhang and J. Weng. Conver-
gence analysis of complementary candid incremental prin-
cipal component analysis. Michigan State University,
2001.

