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Abstract— How can a humanoid robot autonomously learn
and refine multiple sensorimotor skills as a byproduct of
curiosity driven exploration, upon its high-dimensional unpro-
cessed visual input? We present SKILLABILITY, which makes
this possible. It combines the recently introduced Curiosity
Driven Modular Incremental Slow Feature Analysis (Curious
Dr. MISFA) with the well-known options framework. Curious
Dr. MISFA’s objective is to acquire abstractions as quickly
as possible. These abstractions map high-dimensional pixel-
level vision to a low-dimensional manifold. We find that each
learnable abstraction augments the robot’s state space (a set
of poses) with new information about the environment, for
example, when the robot is grasping a cup. The abstraction
is a function on an image, called a slow feature, which can
effectively discretize a high-dimensional visual sequence. For
example, it maps the sequence of the robot watching its
arm as it moves around, grasping randomly, then grasping
a cup, and moving around some more while holding the cup,
into a step function having two outputs: when the cup is or
is not currently grasped. The new state space includes this
grasped/not grasped information. Each abstraction is coupled
with an option. The reward function for the option’s policy
(learned through Least Squares Policy Iteration) is high for
transitions that produce a large change in the step-function-
like slow features. This corresponds to finding bottleneck states,
which are known good subgoals for hierarchical reinforcement
learning - in the example, the subgoal corresponds to grasping
the cup. The final skill includes both the learned policy and
the learned abstraction. SKILLABILITY makes our iCub the
first humanoid robot to learn complex skills such as to topple or
grasp an object, from raw high-dimensional video input, driven
purely by its intrinsic motivations.

I. INTRODUCTION

In reinforcement learning (RL; [1, 2]), an important prob-

lem is to learn distinct skills without any external guid-

ance [3]. Skills can act as building blocks for learning more

complex skills [4], in a hierarchical learning system. The

options framework [5] formalizes skills as RL policies, active

within a subset of the state space, which can terminate

at subgoals, after which another option takes over. When

the agent has high-dimensional input, like vision, a skill

will require a dimensionality reducing mapping called a

feature abstraction (or simply an abstraction), so that policy

learning becomes tractable [6]. There have been attempts

to find skills with abstractions in domains such as those of

humanoid robotics [6, 7, 8, 9]. These rely, however, either on

demonstrations and explicit task-descriptions from humans,

or a readily available state-description and externally defined

goals for guidance.
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We present here SKILLABILITY, which combines the

recently introduced Curiosity Driven Modular Incremental

Slow Feature Analysis (Curious Dr. MISFA; [10, 11]), in

which an agent explores its environment and learns slow-

feature-based abstractions, with the options framework, used

to build the abstractions into skills. Curious Dr. MISFA com-

prises Incremental Slow Feature Analysis (IncSFA; [12, 13]),

and Artificial Curiosity (AC; [14, 15]),

IncSFA is used for learning slow features incrementally

from high-dimensional sensory input. Slow features [16]

can encode underlying causes of the rapidly changing raw

sensory inputs. They are based on the slowness principle [17,

18, 19], which posits that these underlying causes of a signal

can be extracted via a temporal consistency objective. For

example, gray-scale pixel values of a video typically change

quickly compared to more abstract latent variables, such as

the position of a moving objects. Slow feature outputs over a

visual sequence in which an event occurs can take the form of

a step function, encoding the two possible states of the event.

With such a feature, potentially useful information about the

states of objects in the environment can be encoded.

AC is used for for directing the agent’s actions. The theory

of AC introduces a mathematical formalism for describing

curiosity and creativity, wherein agents are interested in the

learnable but as yet unknown aspects of their environment,

but are disinterested in the predictable or inherently unlearn-

able aspects. More specifically, a creative agent needs two

learning components: an adaptive encoder of the growing his-

tory of perceptions and actions and a reinforcement learner.

The learning progress of the encoder, which in our case is

IncSFA, becomes an intrinsic reward for the reinforcement

learner [14]. Curious Dr. MISFA learns multiple slow feature

abstractions directly on the raw visual input, in order from

lowest to highest learning difficulty, which is predicted by

the theory of AC.

The novel contribution of this work is to show how skills

can be built upon the slow-feature-based abstractions. In

SKILLABILITY, each feature learned by Curious Dr. MISFA

augments the robot’s default state space, which in our case is

a set of poses learned using Task Relevant Roadmaps [20].

This augmented state space is further clustered to create new,

distinct states. A Markovian transition model is learned by

exploring the new state space. The reward function is also

learned through exploration, with the agent being intrinsi-

cally rewarded for making state-transitions that produce a

large change in the step-function-like slow feature outputs.

This specialized reward function is used to build the skill

policies, to drive the agent to states where such transitions



will occur. These states resemble bottleneck states, i.e.,

“doorways”, which are known to be good subgoals in the

absence of externally imposed goals [21, 22]. Once the

transition and reward functions are learned, the skill’s policy

is learned via Least-Squares Policy Iteration (LSPI; [23]).

Experimental results conducted using the iCub robot illus-

trate how SKILLABILITY leads to the learning of two skills,

of cup toppling and cup grasping.

The rest of this paper is organized as follows. Section II

presents an overview of the Curious Dr. MISFA. Section III

presents our approach to do skill learning using Curious Dr.

MISFA. Section IV contains results of experiments on our

iCub; Section V concludes the paper.

II. CURIOUS DR. MISFA

In this section, we briefly review Curiosity Driven Modular

Incremental Slow Feature Analysis.
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Fig. 1. Learning Process of Curious Dr. MISFA. Given a set of input
streams, abstractions are learned in order of learning difficulty, from the
easiest to the most difficult. The result is a set of abstractions {φ1, ..., φm}
learned sequentially. However, since the learning difficulty of input streams
are not known a priori, the learning process involves estimating not just the
abstractions, but also the order in which the input streams are encoded.

From a set of high-dimensional input streams X =
{x1, ...,xn : xi(t) ∈ R

I}, Curious Dr. MISFA learns

abstractions Φt = {φ1, ..., φm;m ≤ n} in order of learning

difficulty, where t denotes time. Each abstraction φi takes

the form of a set of orthogonal slow features, is unique, and

maps one or more input streams x ∈ X to low-dimensional

output y(t) ∈ R
J , J ≪ I , where y(t) = φi (x(t)). Since

the learning difficulty of the input streams are not known
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Fig. 2. The architecture of Curious Dr. MISFA includes (a) an RL agent that
learns an input stream selection policy from intrinsic rewards, (b) an adaptive
IncSFA-ROC module that updates an abstraction based on the incoming
input observations, and (c) a gating system that prevents learning duplicate
abstractions.

a priori, the learning process involves estimating not just

the abstractions, but also identifying the current easiest-to-

learn input stream, which is not redundant with already

learned abstractions. To this end, Curious Dr. MISFA uses

Reinforcement Learning to learn an optimal input stream

selection policy π.

Figure 2 shows the architecture of Curious Dr. MISFA,

which includes (a) an RL agent that generates π based

on intrinsic rewards, (b) an adaptive IncSFA-Robust Online

Clustering (ROC; [24, 25]) module that updates an abstrac-

tion based on the incoming input observations, and (c) a

gating system that prevents encoding inputs that have been

previously encoded.

The Curious Dr. MISFA RL agent (not the same as a

skill-learning agent, which we will discuss in Sec. III) is

within an internal environment that has a set of discrete states

SI = {sI1, ..., s
I
n}, equal to the number of input streams. In

each state sIi , the agent is allowed to take only one of the two

actions (AI ): stay or switch. The action stay causes the agent

to stay in the same state, while switch randomly shifts the

agent’s state to one of the other states. In between actions, at

state sIi , the estimator receives a fixed τ time step sequence

of input observations (x) of the corresponding input stream

xi. The adaptive abstraction φ̂ 6∈ Φt updates based on x via

the IncSFA-ROC abstraction-estimator.

The agent receives intrinsic rewards for transitions pro-

portional to the corresponding learning progress made by

IncSFA-ROC algorithm. These intrinsic rewards contribute to

estimating a reward function, which is used to compute the



input stream selection policy π. This policy is used to select

the input stream for the next iteration, yielding new samples

x. These new samples, if not encodable by previously learned

abstractions, are used to update the adaptive abstraction. The

updated abstraction φ̂ is added to the abstraction set Φt,

when the IncSFA-ROC’s estimation error falls below a low

threshold δ. When an abstraction is added, a new adaptive

abstraction φ̂ is instantiated and the process continues.

The following sections discuss more details on different

parts of Curious Dr. MISFA algorithm.

A. Abstraction-Estimator: IncSFA-ROC

Curious Dr. MISFA’s abstraction-estimator is the Incre-

mental Slow Feature Analysis coupled with a Robust Online

Clustering algorithm. IncSFA is used to learn real-valued

abstractions of the input, while ROC is used to learn a

discrete mapping from the current abstraction activations to

the agent’s subjective state-space S†, which contains discrete

(clustered) values of all previously encoded abstractions.

IncSFA: Slow feature analysis [16] is an unsupervised

learning technique that extracts features from an input stream

with the objective of maintaining a slowly-changing feature

response over time. SFA is concerned with the following

optimization problem:

Given an I-dimensional input signal x(t) =
[x1(t), ..., xI(t)]

T , find a set of J instantaneous real-

valued functions g(x) = [g1(x), ...,gJ(x)]
T, which

together generate a J-dimensional output signal

y(t) = [y1(t), ..., yJ(t)]
T with yj(t) := gj(x(t)), such

that for each j ∈ {1, ..., J}

∆j := ∆(yj) := 〈ẏ2j 〉 is minimal− (1)

under the constraints

〈yj〉 = 0 (zero mean), (2)

〈y2j 〉 = 1 (unit variance), (3)

∀i < j : 〈yiyj〉 = 0 (decorrelation and order), (4)

with 〈·〉 and ẏ indicating temporal averaging and the deriva-

tive of y, respectively.

The goal is to find instantaneous functions gj generating

different output signals that are as slowly varying as pos-

sible. The decorrelation constraint (4) ensures that different

functions gj do not code for the same features. The other

constraints (2) and (3) avoid trivial constant output solutions.

SFA operates on the covariance of observation derivatives,

so it scales with the size of the observation vector instead of

the number of states. SFA is originally realized as a batch

method, requiring all data to be collected before processing.

The algorithmic complexity is cubic in the input dimension

I . In contrast, IncSFA has a linear update complexity [13],

and can adapt the features to new observations, achieving

the slow-feature objective robustly in open-ended learning

environments.

ROC maintains estimates (via nearest neighbor) of slow-

feature outputs. These clusters act as discrete subjective

states, in space S†. In learning, ROC is similar to an

incremental K-means algorithm — a set of cluster centers is

maintained, and with each new input, the most similar cluster

center (the winner) is adapted to become more like the input.

Unlike k-means, with each input it follows the adaptation

step by merging the two most similar cluster centers, and

creating a new cluster center at the latest input. In this way,

ROC can quickly adjust to non-stationary input distributions

by directly adding a new cluster for the newest input sample,

which may mark the beginning of a new input process.

B. Estimation Error and Curiosity Reward

Each ROC-Estimator node j has an associated error ξj .

These errors are initialized to 0 and then updated whenever

the node is activated by: ξj(t) = min
w

‖y(t)− vw‖, where

y(t) is the slow-feature output vector, vw is the estimate

of the wth cluster of the activated node and ‖.‖ represents

L2 norm. The total estimation error is calculated as the

sum of stored errors of the nodes: ξ(t) =

p
∑

j=1

ξj(t). The

agent receives rewards proportional to the derivative of the

total estimation error, which motivates it to continue towards

yielding a learnable abstraction. The agent’s reward function

is computed at every iteration from the curiosity rewards (ξ̇)

as follows:

RI(sI , sI , a) := (1− η) RI(sI , sI , a) + η

t+τ
∑

t

−ξ̇(t)

where 0 < η < 1 is a discount factor, τ is the duration of

the current option until its termination, (sI , sI) ∈ SI and

a ∈ {stay, switch}.

C. Input Stream Selection Policy

The transition-probability model P I of the internal envi-

ronment is similar to a complete graph and is given by:

(

P I
i,j,stay, P I

i,j,switch

)

=

{

(1, 0), if i = j

(0, 1

N−1
), if i 6= j

(5)

∀i, j ∈ [1, ..., N ]. Using the current updated model of

the reward function RI and the internal state transition-

probability model P I , we use model-based Least Squares

Policy Iteration [23] to generate the agent’s internal-policy

(π : SI × {stay, switch} → [0, 1]) for the next iteration.

The agent uses a decaying ǫ-greedy strategy over the internal

policy to carry out an internal-action (stay or switch) for the

next iteration.

D. Module Freezing and New Module Creation

Once the adaptive (training) module’s φ̂ estimation error

gets lower than a threshold δ, the agent freezes and saves

the IncSFA-ROC module, resets the ǫ-greedy value and starts

training a new module.

E. Gating System and Abstraction Assignment

The already trained (frozen) modules represent our learned

library of abstractions Φt. If a trained module’s estimation

error within an option is below the threshold δ, that option

is assigned with that module’s abstraction and the adaptive
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i when executed, generates a high-

dimensional observation stream xi, which is an input to Curious Dr. MISFA
algorithm.

training module φ̂ will be prevented from learning via a

“gating signal” (see Figure 2). There is no intrinsic reward

in this case. Hence the training module φ̂ will encode only

data from input streams that were not encoded earlier. Input

that no other trained modules can encode, serves to train the

adaptive module.

III. SKILL LEARNING USING SKILLABILITY

SKILLABILITY combines the options framework with

Curious Dr. MISFA to autonomously learn skills from high-

dimensional video data, in the absence of any external

guidance. Curious Dr. MISFA provides slow-feature-based

abstractions, and the corresponding abstraction outputs are

discretized and used to construct the agent’s subjective state

space, for each abstraction set. Options are learned in the

subjective spaces, with a policy that maximizes the variation

in the slow feature output.

Recall that S† denotes the agent’s discrete subjective

state space that contains previously encoded abstractions of

the high-dimensional observations along with the predefined

states. The agent additionally has a set of n options that are

pre-defined exploratory behaviors over different parts of the

agent’s subjective state space, called the exploratory option

set Oe = {Oe
1, ..., O

e
n}. More formally, an exploratory option

is a tuple 〈Ie
i , β

e
i , π

e
i 〉, where Ie

i ⊆ S† is the initiation

set comprising states where the option is available, βe
i :

S† 7→ [0, 1] is the option termination condition, which will

determine where the option terminates (e.g., some probability

in each state), and πe
i : Ie

i × A → [0, 1] is a pre-defined

option’s exploration policy, such as a random walk within

the applicable state space. Executing an option implies that

the agent follows the option’s policy until its termination

condition is met.

As shown in Figure 3, each exploratory option Oe
i when

executed, generates a high-dimensional observation stream:

xi(t) = U(P(s, πe
i (s

†))), where s† ∈ Ie
i is the agent’s

current subjective state while executing Oe
i at time t, and

s is the corresponding environment state s ∈ S .

We have not yet discussed where the input streams might

come from. In this case, they come from executing each of

these exploration policies. Let X = {x1, ...,xn} denote the

set of n different I-dimensional input observation streams

generated by the n option’s exploration policies. Curious

Dr. MISFA algorithm will learn abstractions sequentially

from the input streams generated upon executing the selected

options. Therefore, the internal states as discussed in Sec.
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Fig. 4. Once an abstraction φi is learned corresponding to an exploratory-
option stream xj = U(P(s, πe

j (s
†))), its feature-activation values are

quantized to a set of discrete feature-states Sφi . A target option is then
constructed with the product state-space IL

i = (Ie
j × Sφi ) and a learned

target-policy πL
i .

II now correspond to the n exploratory options. When the

agent shifts to one of the internal states, it executes the

corresponding exploratory option. The termination condition

is set to the fixed time-out τ .

Given the input exploratory-option set, the agent is trying

to learn a target-option set OL = {OL
i }, which corresponds

to a set of skills. Each target option OL
i , unlike an exploratory

option, has additionally a learned abstraction φi ∈ R
I×J that

maps the input observation (x(t) ∈ R
I ) to J-dimensional

(J ≪ I) feature output (y(t) ∈ R
J ). A target option is there-

fore a tuple 〈IL
i , β

L
i , φi, π

L
i 〉. I

L
i ⊆ (S†×Sφi) is the target-

option’s initiation set defined over augmented state-space

(S† ×Sφi), where Sφi denotes a set of discretized states in

the feature-output (y) space. βi is the option’s termination

condition, and πL
i : (S† × Sφi) × A 7→ [0, 1] is a learned

target-policy that generates a predictable observation-stream

U(P(s, πL
i (s

†))), s ∈ S, s† ∈ IL
i .

Learning a Target Option Once an abstraction φi is

learned, corresponding to the easiest but not-yet learned

exploratory-option stream xj = U(P(s, πe
j (s

†))), its feature-

activation values (yi = φi · xj) are discretized to a set of

discrete feature-states Sφi . A target option is then constructed

(Figure 4). The initiation set is simply the product state-

space: IL
i = (Ie

j × Sφi). The termination condition is

problem specific. The target option policy πL
i : IL

i × A 7→
[0, 1] must be done in such a way to facilitate any subsequent

reuse of the target option.

A target-policy πL
i is developed using Model-based Least-

Squares Policy Iteration Technique (LSPI; [23]) using es-

timated transition and reward models. The target-option’s

transition model (POL

i ) has been continually estimated from

the (s, a, s′) samples generated via the exploratory-option’s

policy πe
j . The reward function is learned from intrinsic

rewards, which are proportional to the change of subsequent

feature activations:

rO
L

i (t) = ‖yi(t)− yi(t− 1)‖ (6)

Since the slow feature outputs often resemble step func-

tions, intrinsically rewarding states include bottleneck states,

which are known to be good subgoals for hierarchical

reinforcement learning in the absence of external goals [22].

Figure 5 illustrates the complete learning process. Given a

set of input exploratory options generating n input streams,
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abstractions are learned in order of learning difficulty, from

the easiest to the most difficult one. When an abstraction

is learned, a corresponding target option is learned. This

learning process results in learning skills in order of learning

difficulty from high-dimensional input streams and avoiding

uncompressible noisy streams, therefore increasing the num-

ber of skills acquired by the agent over time.

IV. EXPERIMENTAL RESULTS

Environment

(a)

Sample Input Observation
iCub's Left-Camera Image iCub's Right-Camera Image

(b)

Fig. 6. (a) Our iCub robot is placed next to a table, with an object (a plastic
cup) in reach of its right arm and within its field-of-view. (b) Sample input
images captured from both left and right iCub camera-eyes are an input to
the algorithm.

We present here experimental results using an iCub

humanoid. More studies on the types of representations

learned by the IncSFA algorithm and curiosity-based abstrac-

tion learning with Curious Dr. MISFA can be found else-

where [10, 11, 13, 26]. The results here show how the iCub

translates the abstractions learned using SKILLABILITY to

learn skills of toppling a cup and grasping a cup.

Environment: We pre-selected a safe environment for the

iCub to explore, yet the iCub is mostly unaware of the

environment properties. The iCub is placed next to a table,

with the cup in reach of its right arm and within its field-of-

view (Figure 6(a)). The cup topples over upon contact, and

the cup often ends up in one of a few locations afterwards,

so the resulting images after toppling are fairly predictable.

There is a human interactor present, who monitors the robot’s

safety and replaces the cup in its original position after

it is toppled. The iCub is not given the structure of the

environment, therefore it does not “know” that the plastic-cup

and the interactor exist. It continually observes the gray-scale

pixel values from the high-dimensional images (75 × 100)

captured by the left and right camera eyes (Figure 6(b)). In

addition to the interactor and the cup, it also cannot recognize

its own moving hand in the incoming image stream, as shown

in the Figure 6(b).

Task-Relevant Roadmap We do not induce exploration

at the level of joint angles, due to the complexity of the

robot’s joint space. Instead we give the robot a map of

poses to move between. This compressed actuator joint-

space representation is called a Task-Relevant Roadmap

(TRM; [20]). This map contains a family of iCub postures

that adhere to relevant constraints. The TRM is grown offline

by repeatedly optimizing cost-functions that represent the

constraints, using a Natural Evolution Strategies (NES; [27])

algorithm, such that the task-space is covered. This allows us

to deal with complex cost-functions and the full 41 degrees-

of-freedom of the iCub’s upper body. The constraints used:

(a) the iCub’s hand is positioned on a plane parallel to the

table while keeping its palm oriented horizontally, (b) the left

hand is kept within a certain region to keep it out of the way,

and (c) the head is pointed towards the table. The task-space

of the TRM comprises the x- and y-position of the hand,

which forms the initial discretized 10 × 5 subjective space

S†. The action space contains 6 actions: move North, East,

South, West, Hand-close and Hand-open.

Because the full body is used, the movements look more

dynamic, but as a consequence, the head moves around

and looks at the table from different directions, making the

task more difficult. Even so, IncSFA still finds the resulting

regularities in the raw camera input stream, and the skill

learner continues to learn upon these regularities, without

any external rewards.

Experiment parameters: We used a fixed parameter

setting for the entire experiment.

IncSFA Algorithm: CCIPCA used learning rate 1/t with

amnesic parameter 0.4, while the MCA learning rate was

0.01. CCIPCA did variable size dimension reduction by

calculating how many eigenvalues would be needed to keep

99% of the input variance — typically this was between 5-

10 — so the 7500 pixels could be effectively reduced to
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estimation error over algorithm execution time. The estimation error eventually drops below the threshold (δ = 6). (e) The resultant ROC cluster centers.
(f)-(g) State-reward function estimate and the learned target-option’s policy.

only about 10 dimensions. The output dimension was set

to 1, therefore, we use only the first IncSFA feature as an

abstraction.

ROC Clustering Algorithm: Each clustering implementa-

tion had its maximum number of clusters set to Nmax = 3.

The estimation error threshold, below which the current

module is saved and a new module is created, was set to

δ = 0.3. The amnesic parameter was set to βamn = 0.01.

Internal Reinforcement Learner (LSPI): The initial ǫ-
greedy value was 1.0, with a 0.995 decay multiplier. The

window-averaging time constant was set to τ = 20, that is, 20

sample images were used to compute the window-averaged

progress error ξ and the corresponding curiosity-reward.

Skill-Learning Reinforcement Learner (LSPI): Each

feature-abstraction output values were quantized to either

(−1, 1), therefore into two |Sφi | = 2 feature-states.

A. Experiment 1: iCub Learns to Topple a Cup

First, the iCub learns a skill to topple the cup. The iCub’s

subjective space (S†) at t = 0 is a 10 × 5 grid found

using TRM. The plastic-cup placed is roughly placed around

(2, 2) grid-point on the table. The input exploratory-option

set (Oe) has only one exploratory option: Oe = {Oe
1}. The

exploratory option terminates after τ = 20 time-steps after

it begins execution. The internal state-space at t = 0 is

SI = {sI1}, where sI1 corresponds to the exploratory option

Oe
1. The exploratory-option’s policy πe

1 is a random-walk

over the subjective-state space S†. It explores by taking

one of the six actions (North, East, South, West, Hand-close

and Hand-open) and gets high-dimensional images from its

camera-eyes. The exploration causes the outstretched hand to

eventually displace and topple the plastic-cup placed on the

table. It continues to explore and after an arbitrary amount

of time-steps the interactor replaces the cup to its original

position. After every τ time-steps, currently executing option

terminates. Since, there is only one exploratory option the

iCub re-executes the same option. Figure 7(a) shows a sample

input image-stream of only the left camera1.

The outcome of IncSFA abstraction-learning over such

an input sequence is a step function (Figure 7(b)), which,

when quantized, indicates the pose of the cup (toppled vs

non-toppled). Figure 7(c) shows the IncSFA output over

the input samples. Figure 7(d) shows the ROC estimation

error (blue solid line) and an Expected Moving Average of

the error (green dashed line) over samples. As the process

continues, the error eventually drops below the threshold

δ = 0.3 and the abstraction-module φ1 is saved. Figure 7(e)

shows the ROC cluster-centers C that map the feature output-

activations to each of the 10× 5 states. It is clear that there

are two well-separated clusters each representing the state of

the plastic-cup.

Immediately after the abstraction is saved, the transition

model (represented by the blue lines in Figure 7(e)) and

1We, however, used both the left and right camera images as an input
observation by concatenating them together.
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Fig. 8. Experiment 2: Grasp Skill. (a) Sample iCub’s left-eye camera images corresponding to the input exploratory option x2 that corresponds to
the biased-init & explore exploratory option. (b) ROC estimation error of the adaptive-module that is encoding the new regularities. (c) IncSFA output
over execution-time. (d) Resultant ROC cluster centers. (e)-(j) Estimated reward function for learing the target option. (k) Learned target-option’s policy
representing the grasp-skill. The circular arrow represents the hand-close action.

reward model of OL
1 are learned, followed by a correspond-

ing target-option’s policy πL
1 . Figure 7(f) shows the learned

policy πL
1 (which makes the iCub to move its hand west

to topple the cup) and an averaged state reward function

(averaged over its 6 actions). Figure 7(g) shows the policy

and the averaged reward function after the cup has been

toppled. The policy makes the iCub to move its hand towards

east. This is because, during the experiment the interactor

happened to replace the cup only when the iCub’s hand is

around far east. Therefore, the learned target option OL
1 , for

the given environment, represents a “Topple” skill.

B. Experiment 2: iCub Learns to Grasp a Cup

Here, we present results of another experiment where

the iCub learns a skill to grasp the cup. We add another

exploratory-option policy, which is biased to explore close to

the cup. This improves the probability for a successful grasp

while exploring (Figure 8(a) Top). The experiment would still

work without this biased exploration, but would take much

longer.

To avoid re-coding the topple event in the case of an

unsuccessful grasp (Figure 8(a) Bottom), the previously

learned topple-abstraction is stored in the learned abstraction-

set Φt = {φ1} at t = 0. Therefore, whenever the cup gets

toppled, the gating system prevents the adaptive abstraction

to train on those samples (see II-E). The adaptive-abstraction

φ̂ now encodes only the successful grasp events.

Figure 8(b) shows the ROC estimation error plot. When

the estimation error drops below the threshold δ = 0.3, it

saves the module φ2 = φ̂ and adds it to the abstraction-set

Φt = {φ1, φ2}. Figure 8(c) shows the IncSFA output over the

samples received. The result is a step-like function indicating

a grasp event. Figure 8(d) shows the cluster centers and the

transitions. The iCub then begins to learn the target-policy

πL
2 by learning the target-option’s transition and reward

model. Figure 8(e)-(j) show the target-option’s state-action

reward model developed after 8000 observation samples

(t=8000). And finally, Figure 8(k) shows the corresponding

skill learned, i.e., to perform a Hand-Close at (2, 2) (the

counterclockwise circular arrow represents the Hand-Close

action). This experiment demonstrated how the iCub learns

an abstraction to represent whether the cup has been suc-

cessfully grasped-or-not, and to learn a subsequent “grasp”

skill.

V. CONCLUSIONS AND FUTURE WORK

We have presented SKILLABILITY, which combines the

Curious Dr. MISFA algorithm, for learning slow-feature-

based abstractions, with the options framework, and a special

reward function to maximize the expected change in slow

feature outputs, for learning policies. These three pieces

enabled an iCub humanoid robot to learn skills with high-

dimensional video input. The iCub learns both a a “Topple”

and “Grasp” skill (with respect to a cup) without any

prior knowledge of its environment and itself, except for

a set of poses used as a roadmap for motion planning. In

future work, we plan to build a continual learning system

that autonomously re-uses previously learned skills to learn

more complex skills, making it an open-ended skill-learning

system.
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[22] Özgür Simsek and Andrew G. Barto. Skill characteri-

zation based on betweenness. In NIPS’08, pages 1497–

1504, 2008.

[23] M. G. Lagoudakis and R. Parr. Least-squares policy

iteration. The Journal of Machine Learning Research,

4:1107–1149, 2003.

[24] I. D. Guedalia, M. London, and M. Werman. An on-

line agglomerative clustering method for nonstationary

data. Neural Computation, 11(2):521–540, 1999.

[25] D. Zhang, D. Zhang, S. Chen, K. Tan, and K. Tan. Im-

proving the robustness of online agglomerative cluster-

ing method based on kernel-induce distance measures.

Neural processing letters, 21(1):45–51, 2005.

[26] M. Luciw and J. Schmidhuber. Low complexity proto-

value function learning from sensory observations with

incremental slow feature analysis. In Proc. 22nd In-

ternational Conference on Artificial Neural Networks

(ICANN), Lausanne, 2012.

[27] Daan Wierstra, Tom Schaul, Jan Peters, and Juergen

Schmidhuber. Natural evolution strategies. In IEEE

World Congress on Computational Intelligence, pages

3381–3387. IEEE, 2008.


