
An Anti-Hebbian Learning Rule to Represent Drive
Motivations for Reinforcement Learning

Varun Raj Kompella, Sohrob Kazerounian, and Jürgen Schmidhuber

IDSIA, Galleria 2, Manno-Lugano, Switzerland
{varun,sohrob,juergen}@idsia.ch

Abstract. We present a motivational system for an agent undergoing reinforce-
ment learning (RL), which enables it to balance multiple drives, each of which is
satiated by different types of stimuli. Inspired by drive reduction theory, it uses
Minor Component Analysis (MCA) to model the agent’s internal drive state, and
modulates incoming stimuli on the basis of how strongly the stimulus satiates the
currently active drive. The agent’s dynamic policy continually changes through
least-squares temporal difference updates. It automatically seeks stimuli that first
satiate the most active internal drives, then the next most active drives, etc. We
prove that our algorithm is stable under certain conditions. Experimental results
illustrate its behavior.

Keywords: Motivational Drives, Reinforcement Learning, MCA, Animats

1 Introduction

Reinforcement Learning (RL) methods [1] have proven quite powerful in endowing
agents with the ability to learn to achieve goals across a wide variety of settings. Typ-
ically however, within any given setting, the agent lacks a motivational system that
would allow it to differentially value various types of simultaneous (possibly conflict-
ing) goals and actions [2, 3]. We introduce a novel method inspired by drive theory [4–
6], which enables an agent to learn from multiple types of rewarding stimuli [7, 8], even
as its preferences for those stimuli change over time. Importantly, this method achieves
behavioral success under these conditions, while learning online.

Although definitions of drive and motivation abound across a number of interdisci-
plinary fields, including psychology, neuroscience, and artificial intelligence, we follow
that of Woodworth [4], who suggested hunger and thirst as prototypical bodily drives.
As the levels of hunger and thirst change in time, an agent is motivated to initiate behav-
iors that satisfy one or the other drive. There are two primary methods by which such
drives are typically represented in the artificial intelligence literature: The first makes
use of homeostatic drive regulation, wherein actions that push a physiological state
variable towards its equilibrium are rewarded, while actions that push the state vari-
able away from that equilibrium are punished [9, 3]. The second, following Hull [10,
2] makes use of drive states that vary from “fully satiated”, to “fully unsatiated”, with
actions that satiate active drives being rewarded.

Hullian and homeostatic drive reduction are highly dependent on physiological pa-
rameters however, and are therefore not always ideal in modeling robotic agents. Rather

2 Kompella et al.

than explicitly model time-varying drive states and the changes to those drive levels re-
sulting from various types of rewarding behavior, our method instead attempts to bal-
ance the various types of rewarding stimuli an agent has received. Doing so allows an
artificial or robotic agent to successfully modulate its behavior in response to active
drives, without making its successful behavior dependent on careful parameter selec-
tion. In this system, an agent’s drive towards a particular stimulus depends, in part,
on how much of that stimulus it has acquired in its recent history, weighed against
how much it desires alternative stimuli. When the agent receives one type of rewarding
stimulus, its drive for that particular stimulus should decrease, while its drive for other
types of stimuli should increase. One elegant method for modeling this input-dependent
drive switching, is to note that as the agent experiences a changing distribution in its
input stimuli, estimating the covariance of this distribution yields a minor component
(MC; [11]) which points in the direction of the least received stimuli. In order to com-
pute the minor component, we use Peng’s Minor Component Analysis (MCA; [12])
algorithm, which uses a low-complexity, online, anti-hebbian updating rule, making it
suitable for open-ended learning. Moreover, such a representation system, allows us to
incorporate intrinsically rewarding behaviors as just another drive of the agent. As dis-
cussed by White [13], there is no simple way to reconcile curiosity driven behaviors,
with drive reduction theory. As we show in simulations however, it is rather simple to
do with an MCA based drive representation.

On its own, this enables an agent to represent drives. It does not however, explain
how an agent can learn which actions bring about the desired types of input stimuli. To
this end, we propose an online, model-based least-squares policy iteration technique,
called MCA-PI, to combine our MCA based drive-representation and action selection
for a simulated robotic agent. We prove that MCA-PI is stable under certain conditions
and present experimental results to demonstrate its performance.

The rest of the paper is organized as follows: Sec. 2 presents details of represent-
ing drives using MCA. Sec. 3 discusses our MCA-PI algorithm and an analysis of its
dynamical behavior. Sec. 4 presents experimental results and Sec. 6 concludes.

2 Representing Drives with MCA

We present a method to represent drive motivations using Minor Component Analysis
(MCA):

(a) Input Stimuli Vector: The input stimulus is an n-dimensional real-valued vec-
tor ξ = [ξ1, ..., ξn]

T , where each dimension represents a particular type of stimulus.
For example, let food (ξ1;) and water (ξ2;) be two types of stimuli for an agent.
When the agent receives only ξ1 = 2 units of food, the corresponding input stimulus
vector is ξ = [2, 0].

(d) Stimulus Priority Vector: A stimulus priority vector ρ = [ρ1, ..., ρn], ρi ∈
(0, 1] determines a priority weighting for each stimulus type. A high-value of ρi indi-
cates that the agent takes longer time to satiate stimulus ξi.

(b) Drive Vector: The agent’s drive at any time t is represented by an n-dimensional
unit-vector D(t) = [d1(t), ..., dn(t)]

T , where each dimension di(t) ∈ [0, 1] represents

MCA-PI 3

an individual drive component for the stimulus ξi. A high value of di(t) indicates that
the agent desires the corresponding stimulus ξi.

(c) Drive-Vector Update: The drive vector is updated incrementally using Peng’s
MCA learning rule:

D(t) = (1− η) D(t− 1) − η (D(t− 1) · Λξ(t))Λξ(t) (1)
D(t)← D(t)/‖D(t)‖ (2)

where η is a constant learning rate, Λ is a n×n diagonal matrix with ρ−1i as its entries.
The normalization step in (2) is required to make it adaptive to non-stationary input
data [14].

(e) Scalar Reward: The scalar reward r(t) given to the agent is computed by pro-
jecting the input stimulus on to the current drive vector:

r(t) = D(t) · Λξ(t) (3)

The agent gets higher scalar rewards if it receives a stimulus-vector ξ(t) whose direction-
cosine (DC) w.r.t D(t) is close to one. That is to say, the more closely the stimulus vec-
tor matches the drive vector, the more rewarding that stimulus will be. The agent, driven
by higher rewards r, will be motivated to visit and then remain in the places where it
is getting the currently rewarding stimuli. However, as the agent continues to remain in
those places, the recent history of the MCA comes to be dominated by samples of the
current stimulus distribution, which drives the minor component away from the current
drive direction (see Figure 1). As a consequence, the longer an agent continues to re-
ceive the same stimulus, the less and less rewarding it becomes (i.e., the agent becomes
satiated)

[ξ1,0], ..., [ξ1,0]

ξ1/ρ1

(a)

ξ2/ρ2

(b)

ξ1/ρ1

ξ2/ρ2

(c)

ξ1/ρ1

ξ2/ρ2

[0, ξ2], ..., [0, ξ2]

d1

d2 d2 d2

d1 d1

Hunger

Thirst

Hunger Hunger

Thirst Thirst

Fig. 1. The MCA drive-vector (D(t), indicated by the bold arrow) points to the direction of
stimuli that it received least in its recent history (anti-hebbian like behavior). (a) D(t) at some
arbitrary time t. (b) When the agent receives water stimulus (ξ2), d2(t) decreases and d1(t)
increases, therefore D(t) slowly turns toward the “hunger” drive-direction. (c) Similarly, when
the agent receives food, the vector slowly turns toward the “thirst” drive-direction.

4 Kompella et al.

Algorithm 1: MCA-PI (S,A,P)
// Ξ : Stimulus function (|S||A| × n) matrix
// R : Reward function (|S||A| × 1) vector

// φS×A : State-Action basis function
// D : MCA drive vector

// Λ : Diagonal matrix with {ρ−1
1 , ..., ρ−1

n } entries

1 for t← 0 to∞ do
2 st← current state
3 at← action selected by policy πt in state st

4 Take action at, observe next state st+1 and stimulus ξ(t+ 1)

//Update Stimulus Function

5 Ξ(st, at)← Ξ(st, at) + ηstim
t+1

(
ξ(t+ 1)− Ξ(st, at)

)
//Update MCA Drive Vector

6 D← (1− η) D − η (D · Λξ(t+ 1))Λξ(t+ 1)

7 D←D/‖D‖
//Update Reward Function

8 R← |ΞΛD|
// Update Policy

9 πt+1← LSTDq-Model-Update(φS×A,P, R, γ, πt)
10 end

3 Action Selection: MCA-based Policy Iteration (MCA-PI)

Unlike previous implementations that represent drives independently in an RL frame-
work [2, 15], an MCA-based drive representation takes all drives into consideration and
computes a resultant unit drive-vectorD(t).D(t) does not necessarily indicate the level
of satiation, instead it optimally points in the direction of stimuli that the agent received
least in its recent history. Based on the drive at time t, the agent needs to shape its
behavior to acquire the least received stimuli. However, to learn an optimal behavior
(policy), in principle, one needs to take into account the internal drive vector compo-
nents (d1, ..., dn) as a part of the agent’s state-space, along with the external world state.
This makes the resultant state space large - exponential in the number of drive compo-
nents. Konidaris and Barto [2] have used a multi-goal RL approach with SARSA(0) [16]
instead, to learn a composite value function for action selection. In a similar way, the
MCA drive vector can be combined with SARSA(0), where each drive-component di(t)
corresponds to a particular goal. However, a drawback of this approach is that since the
internal drive-function changes quite quickly over time, the resulting decision process
is non-Markovian. Therefore, single-step on-policy SARSA(0) algorithm that requires
a decaying exploration rate for optimal performance [17], may not converge to an op-
timal policy. This problem can be overcome if a transition model of the external world
environment is known.

MCA-PI 5

Algorithm 1 shows the pseudocode of MCA-PI algorithm. Given a transition model
for the external world P : S × A× S → [0, 1], for each time-step the algorithm incre-
mentally updates its estimate of the stimulus functionΞ (a matrix of size (|S||A| × n)),
MCA-drive vector D, and the reward function R (a vector of size |S||A| × 1). It then
evaluates the current policy for the new reward function R using simulated samples
(s, a) from P , and generates a policy for the next time-step based on the updated value-
function.

3.1 Dynamical Analysis

In this section, we study the dynamical behavior of MCA-PI algorithm. The main goal
here is to show that the algorithm makes the agent balance between multiple drives in
an uniform manner.

Outline: We first define policy-sets, such that for any arbitrary trajectory of policies
within each set, the reward function converges to a unique fixed point (Definition 1).
We then show that the policy-sets are non-empty in Theorem 1. Since MCA-PI is an
approximate policy-iteration technique, we show in Theorem 2 that the error between
the approximate value-function and the true-value function is bounded. Finally, in The-
orem 3 we show that the sequence of policies generated by the MCA-PI algorithm,
shifts between the policy-sets in a cyclical manner.

Conditions: The following conditions are necessary for the rest of the analysis:
(1) The learning rate of MCA satisfies: ηλ1 < 0.5, 0 < η ≤ 0.5, where λ1 is the largest
eigenvalue of the expected covariance matrix C (=E[ξξT]) of the input stimulus data
(ξ ∈ Rn).
(2) C is a symmetric nonnegative definite matrix. This condition is initially met by
the agent’s exploration using Gaussian optimistic-initialization [18], and later by the
algorithm switching dynamics.
(3) The columns of stimulus-function matrix Ξ are not all-ones or a constant multiple
of all-ones vector1. This condition, which is trivial, says that the agent does not receive
equal amounts (or zero) of a particular stimulus at all world states. In which case, there
is no planning required for that stimulus and the drive-vector dimension can be reduced
to (n− 1).

Using Condition (2), C can be factorized into V LV −1, where V is the eigen-
vector matrix (columns representing unit-eigenvectors vi) and L is a diagonal matrix
with corresponding eigenvalues (λi). In addition, the eigenvectors {vi|i = 1, 2, ..., n}
(sorted according to λ1 > λ2... > λn) form an orthonormal basis spanning Rn,
where v1 is the principal-component and vn is the minor-component. Therefore, the
drive vector D ∈ Rn can be represented as a linear combination of the basis-vectors
D(t) =

∑n
i=1 wi(t)vi, where wi(t) are some coefficients. Lemma 1 shows that the

drive vector D(t) converges to the component with the least-eigen value vn (minor-
component).

1 All-ones vector is a vector where every element is 1.

6 Kompella et al.

Lemma 1 If Conditions (1)&(2) are satisfied, the following limits of the coefficients wi
hold true:

lim
t→∞

wi(t) = 0, ∀i ∈ 1, ..., n− 1 and lim
t→∞

wn(t) = 1

Proof. The proof follows from Lemma 3 in [14]. ut

Definition 1 Let Πi,∀i ∈ {1, ..., n} denote sets of stationary policies (π : S × A 7→
[0, 1]) defined over the underlying irreducible Markov chain, s.t., for any trajectory
ζ = {πt ∈ Πi,∀t > 0},

lim
t→∞

Rζ(t) = ΞΛvi (4)

Theorem 1 If condition (3) is satisfied,Πi,∀i ∈ {1, ..., n} are non-empty disjoint sets.

Proof. Since,Ξ does not contain scalar multiples of all-ones column vectors (Condition
(3) and Lemma 1), there exists at least one trajectory ζ of policies where E[ξξT |π;∀π ∈
ζ] has the minor-component vi. Since, each vi,∀i ∈ {1, ..., n} are orthonormal, the
policy-sets are disjoint. ut

Theorem 2 At any time t, let πt, πt+1, ..., πt+m be any arbitrary sequence of policies,
such that, πm ∈ Πi,∀m = t, t+1, ...,. Let Q̃πt , Q̃πt+1 , ..., Q̃πt+m be the corresponding
sequence of approximate value functions as computed by LSTDQ. Then, there exists a
positive scalar δ that bounds the errors between the approximate and the true value
functions over all iterations:

‖Q̃πm −Qπm‖∞ ≤ δ, πm ∈ Πi,∀m = t, t+ 1, ...,

Proof. The Least-Squares fixed-point approximation [19] of the value function for a
stationary transition model P and reward function R can be written as Q̂π = AπφTR,
where Aπ = φ

(
φT (φ− γPπφ)

)−1
. For a given stationary reward function R, there

exists a positive scalar ε that bounds the error between the least-squares fixed-point
approximation and the true value function :

‖Q̂πm −Qπm‖∞ ≤ ε, ∀m = t, t+ 1, ..., (5)

From Theorem 1, we have since πm ∈ Πi,∀m = t, t + 1, ...,, there exists a fixed
point R∗ to the sequence of reward functions. Therefore, ‖Rm − R∗‖∞ ≤ ν =⇒
‖AπmφTRm−AπmφTR∗‖∞ ≤ ν =⇒ ‖Q̃πm−Q̂πm‖∞ ≤ ν. Using (5) and triangle-
inequality we get, ‖Q̃πm −Qπm‖∞ ≤ ε+ ν (≡ δ), πm ∈ Πi,∀m = t, t+1, ..., ut

Theorem 3 Let πt, πt+1, πt+2, ... be a sequence of policies generated by the algorithm
at any arbitrary time t. Then, ∃N ∈ N+, such that:

{πt, πt+1, ..., πt+N} ⊆ Πi, {πt+N+1, πt+N+2, ...} ⊆ Πj , j 6= i, i ∈ {1, ..., n}

MCA-PI 7

Environment

(a)
0 10 40 50

States
0 1000 2000 3000 4000
0

1000

2000

3000

4000

5000

6000

7000

8000
MCA-PI

Brownian Exp.

Cumulative Reward (20 Runs)

t->
(b)

Drive Vector (IDI) (Run#5)

0 1000 2000 3000 4000

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Drive-1

Drive-2

t->
(c)

t->0 200 400 600 800 10000

10

20

30

40

50

60

70

Avg. of 20 Runs

Run# 5

LSTDq Error

(d)

Value Function Plot

0
10

20
30

40
50 0.0

0.2

0.4

0.6

0.8

1.0

100

150

200

250

300

350

400

0 10 20 30 40 50

0 10 20 30 40 50

R10(t)

R40(t) V
(s

)-
>

Nor
m

al
ize

d
re

war
d

va

lu
es

State

Opt. Policy 1
Opt. Policy 2

(e)

Fig. 2. Figure best viewed in color. See text for accompanying details.

Proof. Since, MCA-PI is an approximate policy iteration algorithm, it follows from
Theorem 2 that the generic bound on policy iteration applies (See Theorem 7.1 [19]).
Therefore, the value-function converges toward the true value function Q∗ correspond-
ing to the current reward function (ΞΛvn). However, a policy π∗vn based on Q∗ max-
imises expected cumulative rewards, i.e. E[γtΞΛvn], which is maximal only when the
principal component of E[ξξT |π∗vn] is equal to vn. Since MCA by definition computes
the minor component, it follows that π∗vn ∈ Π

j , j 6= i. This implies that there exists a
positive integer N , where the policies {πt+N+1, πt+N+2, ...} ∈ Πj . ut

Theorems 1, 2 and 3 explain the switching dynamics of the algorithm between multiple
drives.

4 Experimental Results

4.1 Experiment 1: Hallway

We evaluate our algorithm here on a classic example of a 50 state closed Markov Chain
(Fig. 2(a); [19]). The agent at each state can take three deterministic actions: left, right
and stay, except for the boundary states 0 (right and stay) and 49 (left and stay). At state
10, the agent receives a stimulus (food) ξ1 = [6 0]T + N (µ = 0, σ = 2) and at state
40, it receives a stimulus (rest) ξ2 = [0 6]T + N (µ = 0, σ = 2). N (µ, σ) represents
an additive Gaussian noise with mean µ and standard deviation σ. The agent has equal
priority towards both stimuli (ρ = [1, 1]).

8 Kompella et al.

We use a constant learning rate (η = 0.01) for the MCA update, a discount factor
γ = 0.95, and indicator basis functions (φS×A) to represent each state. An initial policy
(π0) and a drive-vector (D) are set arbitrarily. The approximate stimulus function Ξ is
optimistically-initialized [18] to N (µ = 0, σ = 0.3) for all states and dimensions.

As a baseline comparison, we evaluate the performance of an agent carrying out
brownian exploration vs. an agent carrying out MCA-PI. The agent using brownian
exploration would also continually visit both the stimulus sources over time. Figure
2(b) shows the cumulative reward with respect to time, averaged over 20 trials for the
two models (shaded region represents the standard deviation). It is clear from the figure
that the MCA-PI approach results in a deliberative behavior in comparison with the
standard brownian motion (with a mean velocity equal to 4 states/timestep). Figure
2(c) shows the changing MCA drive-vector over time for a single run. The drive-vector
periodically switches between v2 → v1 → v2, as derived in Theorem 3. The LSTDq
error ‖Q̃πt − Q̂πt+1‖ peaks momentarily (see Fig. 2(d)) whenever the agent switches
between the policy setsΠi of one stimulus, to the other. However, the error drops down
quickly thereby resulting in the next switch. The red dashed line indicates the average
error for 20 different runs. Figure 2(e) shows the variation of the state-values (mean and
the standard deviation over 20 runs) with the changing reward values at states 10 (blue
triangles and cyan error bars) and 40 (red circles and yellow error bars). It is clear from
the figure that the value of state 10 is higher whenever the projection ‖r‖ = ‖Ξ · Λv2‖
is higher, which makes the agent shift to state 10. It stays there until the drive reduces
and the value of state 40 becomes higher. The constant switching between the sources
balance both drives in an uniform manner. The video for the experiment can be found
at URL: http://www.youtube.com/watch?v=Mk_wyJ8mQcU

4.2 Experiment 2: Three Room Maze

Here, we evaluate MCA-PI on a larger discrete-state three room maze environment.
There are in total 200 reachable states and two door-ways as shown in Figure 3(a).
The agent can take 5 deterministic actions: left, right, north, south and stay, except at
the states next to the room boundary. Each room has a distinct stimulus source placed
arbitrarily. The agent has equal priority towards all the stimuli (ρ = [1, 1, 1]).

We use a constant learning rate (η = 0.01) for the MCA update, a discount factor
γ = 0.85, and 30 Laplacian eigen-map features (Proto Value Functions; [20]) as basis
functions (φS×A) to represent each state. An initial policy (π0) and a drive-vector (D)
are set arbitrarily. The approximate stimulus function Ξ is optimistically initialized to
N (µ = 0, σ = 0.3) for all states and dimensions.

Figure 3(b) shows the cumulative stimulus over time for 20 runs of the experiment.
We see that the agent accumulates each of the sources nearly equally. The drive vectorD
switches periodically between v1, v2 and v3 (Fig. 3(c)), and is stable with a low LSTDq
error over time (Fig. 3(d)). It can be seen in Figure 3(c) that the switching starts after a
delay t ' 1000 time-steps. This is due to the updating estimate of the stimulus function
(Ξ) upon exploring via optimistic initialization. Figure 3(e)-(g) shows three sets of
value functions and corresponding policy plots at different time instants, directing the
agent to each of the stimulus sources. The video for the experiment can be found at
URL: http://www.youtube.com/watch?v=ZbvSSmZrOzc

MCA-PI 9

Environment

(a)
0 19

0

9

Cumulative Stimulus (20 Runs)

t->
(b)

6000

7000 Stimulus-1

Stimulus-2

Stimulus-35000

4000

3000

2000

1000

0
1000 2000 3000 4000 5000

Drive Vector (IDI) (Run#1)

t->
(c)

0 1000 2000 3000 4000 5000

0.2

0.4

0.6

0.8

1.0

1.2

1.4 Drive-1

Drive-2

Drive-3

t->

LSTDq Error

(d)

500 1000 1500 2000 25000

20

40

60

80

100

3000

Avg. of 20 Runs

Run# 1

Value Function and Policy Plots (Run #1)

(e)

0 5 10 15 20

0

2

4

6

8

0 5 10 15 20

0

2

4

6

8

0 5 10 15 20

0

2

4

6

8

(f) (g)

Fig. 3. Figure best viewed in color. See text for accompanying details.

4.3 Experiment 3: Extrinsically and Intrinsically Motivated Agent

In this experiment, we consider an agent that is both extrinsically and intrinsically mo-
tivated. Intrinsically motivated (curious) agents not only focus on potentially externally
posed tasks, but also creatively invent self-generated tasks that have the property of cur-
rently being still unsolvable but easily learnable. The theory of Artificial Curiosity (AC;
[21]) introduces a mathematical formalism for describing curiosity and creativity in ar-
tificial agents. A creative agent needs two learning components: an adaptive encoder of
the growing history of observations and a reinforcement learner. The learning progress
of the encoder becomes a curiosity reward for the reinforcement learner. For the sake
of consistency as well as simplicity, we use of another instance of the MCA algorithm
coupled with Robust Online Clustering (ROC; [22]) an as an encoder2. We refer to it as
intMCA for the rest of the paper.

The agent is in an environment with two extrinsic stimulus sources {ξ1 =food,
ξ2 =bed} and two different learnable signal sources (represented by a book and music
as shown in Figure 4(a)) that constitute two sources for curiosity-stimulus (ξ3). When
the agent is at the states corresponding to book and music, it receives a 2-dimensional
input signal xbook (Figure 4(b)) and xmusic (Figure 4(c)) given by:

xbook :

{
x1(t) = sin(t) + cos(11t)2

x2(t) = cos(11t) , xmusic :

{
x1(t) = sin(2t+ π

3)− cos(11t)2

x2(t) = cos(11t) (6)

These signals are expanded into a five-dimensional polynomial space ([x1, x2, x21, x22,
x1x2]) and normalized (whitened) to have unit-variance. MCA when applied to the

2 Note that this implementation is not strictly limited to the MCA and can easily be replaced
with any other adaptive learning machine.

10 Kompella et al.

0 1000 2000 3000 4000
0

2000

4000

6000

8000

10000

EM

EM + IM

0 1000 2000 3000 4000
0

2000

4000

6000

8000

10000

Hunger

Rest

Curiosity

(k) (l)

Cumulative Reward (20 Trials)

(m)
0

80

160

240

320

400

480

560

640
3.5

3.1

2.7

2.3

1.9

1.6

1.2

0.8

0.4

0

State-Action History (20 Trials)Cumulative Stimulus (20 Trials)

t-> t->

0 100 200 300 400 500− 4

− 3

− 2

− 1

0

1

2

3

4

0 100 200 300 400 500− 4

− 3

− 2

− 1

0

1

2

3

4

0 100 200 300 400 500− 1.0

− 0.5

0.0

0.5

1.0

1.5

2.0

Component-1
Component-2

0 100 200 300 400 500− 2.0

− 1.5

− 1.0

− 0.5

0.0

0.5

1.0

Component-1
Component-2

(a)

(b)

(c)

(d)

(e)

(f) (h)

(g) (i)

Agent

Environment
Learnable

Inputs
Learned
Outputs

Value Function Plots
(Action - 'Stay')

(j)
0 500 1000 1500 2000 25000

200

400

600

800

1000

Module 1
(Book)

Learned

Module 2
(Music)
Learned

intMCA Error

t->

t->t->

t-> t->

Fig. 4. Figure best viewed in color. See text for accompanying details.

derivative of the normalized signals (approximated by backward-difference), learns the
underlying slowly changing driving forces [23], which are sin(t) (Figure 4(d)) and
sin(2 t + π/3) (Figure 4(e)). When the intMCA feature outputs become stable, the
intMCA-error (ε) decreases. This decrease results in a proportional curiosity stimulus:

ξ3 = Clip(−ε̇, 0, 12) (7)

ξ3 is clipped to lie in the range [0, 12] to keep it bounded and comparable with the
other stimuli (ξ1, ξ2). The agent’s drive-vectorD is a 3-dimensional vector representing
hunger, rest and curiosity drives. The agent has equal priority towards all the stimuli
(ρ = [1, 1, 1]). The approximate stimulus function Ξ is optimistically initialized to
N (µ = 0, σ = 0.3) for all states and dimensions. The agent can take 5 deterministic
actions: left, right, north, south and stay, except at the states next to the room boundary.

Similar to the earlier experiments, the agent quickly learns the model for the stim-
ulus function Ξ . However, in this case it is non-stationary since ξ3 vanishes when the
learning of the intMCA completes (Eq. (7)). The initial behavior of the agent is simi-
lar to the extrinsically motivated agent, which sequentially switches between the states
corresponding to the stimuli. However, since ξ3 decreases, the agent continues to seek
the stimulus ξ3 further. This allows it to completely learn the signal. Once the error ε
drops down close to zero, intMCA module is saved for future-use and a new intMCA
is created. The agent is again initialized with optimistic values to allow it to explore.
Now since, the agent no longer receives any curiosity stimulus ξ3 at the state where the
earlier intMCA module was learned, it goes to the other signal source to get ξ3. Figures
4(f)-(i) show localized state-value functions learned for stay action. Figure 4(j) shows
the estimation error plot over execution time showing two decaying peaks for each of
the signal sources. Figure 4(k) shows cumulative reward averaged over 20 trials (shaded
region represents the standard deviation) for the EM+IM agent and the EM-only agent
from the earlier experiment. From the plot it is clear that the method works similarly to

MCA-PI 11

the EM-only experiment. Figure 4(l) shows individual cumulative stimulus components
averaged over 20 trials. The curiosity stimulus is lower compared to the other stimuli.
This is because of its vanishing nature. Figure 4(m) shows the state-action history for
each module learned averaged over 20 Trials. The video for the experiment can be found
at URL: http://www.youtube.com/watch?v=cqvw-MxZkOA

5 Discussion

We showed MCA-PI’s performance on a simple and a relatively large discrete state-
space maze environment. MCA-PI has a computational complexity of O(k2) where k
represents the number of basis-functions used however, it is sample efficient. The al-
gorithm can be applied to much larger discrete state and continuous domains by either
using factored MDP approaches or continuous extensions of Laplacian methods [20].
At a qualitative level, these simulations show that the behavior of an agent undergoing
MCA-PI mirrors the behavior one expects from appropriately constructed Hullian, or
homeostatic drive reduction based agent. In particular, we desire an agent to be able
to seek out stimuli that satiate its currently active drives, and to switch to behaviors
that seek out new stimuli when satisfied with prior ones. Unlike Hullian and homeo-
static systems however, our model achieves this without explicit need for modeling and
parameterizing individual time-varying drive states, which makes it a more elegant so-
lution in situations wherein the agent only needs to balance its behaviors, rather than
maintain pre-defined physiological state variables.

6 Conclusions

The canonical RL literature tends to ignore that robotic agents and animats operating
in real-time, complex, and changing environments typically have to monitor several
continuous, time-varying reward types in an online fashion. While some methods have
attempted to address this by developing motivational frameworks which make use of
Hullian drives, or homeostatic drive theory, these methods tend to focus on physiolog-
ical state variables as found in biological agents. Instead, we present a method that is
motivated by drive theory, but which represents an agent’s drive by means of Minor
Component Analysis. Doing so enables an agent to balance between competing drives
in a manner which doesn’t depend on physiological parameters, but rather, the relative
levels of the various rewarding stimuli it seeks.

Acknowledgments. This work was funded through SNF grant #138219 (Theory and
Practice of Reinforcement Learning II) and #270247 (NeuralDynamics project).

References

1. R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1. Cambridge
Univ Press, 1998.

12 Kompella et al.

2. G. D. Konidaris and A. G. Barto. An adaptive robot motivational system. In From Animals
to Animats 9, pages 346–356. Springer, 2006.

3. I. Cos, L. Cañamero, G. M. Hayes, and A. Gillies. Hedonic value: enhancing adaptation for
motivated agents. Adaptive Behavior, 21(6):465–483, 2013.

4. R. S. Woodworth. Dynamic psychology, by Robert Sessions Woodworth. Columbia Univer-
sity Press, 1918.

5. C. L. Hull. Principles of behavior: an introduction to behavior theory. Century psychology
series. D. Appleton-Century Company, incorporated, 1943.

6. J. Wolpe. Need-reduction, drive-reduction, and reinforcement: a neurophysiological view.
Psychological review, 57(1):19, 1950.

7. L. Barrett and S. Narayanan. Learning all optimal policies with multiple criteria. In Proceed-
ings of the 25th international conference on Machine learning, pages 41–47. ACM, 2008.

8. P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker. Empirical evaluation meth-
ods for multiobjective reinforcement learning algorithms. Machine learning, 84(1):51–80,
2011.

9. M. Keramati and B. S. Gutkin. A reinforcement learning theory for homeostatic regulation.
In J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems 24, pages 82–90. 2011.

10. G. D. Konidaris and G. M. Hayes. An architecture for behavior-based reinforcement learn-
ing. Adaptive Behavior, 13(1):5–32, 2005.

11. E. Oja. Principal components, minor components, and linear neural networks. Neural Net-
works, 5(6):927–935, 1992.

12. D. Peng, Z. Yi, and W. Luo. Convergence analysis of a simple minor component analysis
algorithm. Neural Networks, 20(7):842–850, 2007.

13. R. W. White. Motivation reconsidered: the concept of competence. Psychological review,
66(5):297, 1959.

14. M. Luciw, V. R. Kompella, S. Kazerounian, and J. Schmidhuber. An intrinsic value sys-
tem for developing multiple invariant representations with incremental slowness learning.
Frontiers in Neurorobotics, 7, 2013.

15. E. Shirinov and M. V. Butz. Distinction between types of motivations: Emergent behavior
with a neural, model-based reinforcement learning system. In Artificial Life, 2009. ALife’09.
IEEE Symposium on, pages 69–76. IEEE, 2009.

16. N. Sprague and D. Ballard. Multiple-goal reinforcement learning with modular sarsa (0). In
IJCAI, pages 1445–1447, 2003.

17. S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári. Convergence results for single-step
on-policy reinforcement-learning algorithms. Machine Learning, 38(3):287–308, 2000.

18. R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. Cambridge, MA,
MIT Press, 1998.

19. M. G. Lagoudakis and R. Parr. Least-squares policy iteration. The Journal of Machine
Learning Research, 4:1107–1149, 2003.

20. S. Mahadevan and M. Maggioni. Proto-value functions: A laplacian framework for learn-
ing representation and control in markov decision processes. Journal of Machine Learning
Research, 8(2169-2231):16, 2007.

21. J. Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

22. I. D. Guedalia, M. London, and M. Werman. An on-line agglomerative clustering method
for nonstationary data. Neural Computation, 11(2):521–540, 1999.

23. V. R. Kompella, M. Luciw, and J. Schmidhuber. Incremental slow feature analysis: Adaptive
low-complexity slow feature updating from high-dimensional input streams. Neural Com-
putation, 24(11):2994–3024, 2012.

